17.設(shè)且對(duì)任意有解不等式 . 查看更多

 

題目列表(包括答案和解析)

(本小題分A,B類(lèi),滿分12分,任選一類(lèi),若兩類(lèi)都選,以A類(lèi)記分)

(A類(lèi))已知函數(shù)的圖象恒過(guò)定點(diǎn),且點(diǎn)又在函

數(shù)的圖象.

(1)求實(shí)數(shù)的值;                (2)解不等式;

(3)有兩個(gè)不等實(shí)根時(shí),求的取值范圍.

(B類(lèi))設(shè)是定義在上的函數(shù),對(duì)任意,恒有

.

⑴求的值;     ⑵求證:為奇函數(shù);

⑶若函數(shù)上的增函數(shù),已知,求

取值范圍.

查看答案和解析>>

已知遞增等差數(shù)列滿足:,且成等比數(shù)列.

(1)求數(shù)列的通項(xiàng)公式;

(2)若不等式對(duì)任意恒成立,試猜想出實(shí)數(shù)的最小值,并證明.

【解析】本試題主要考查了數(shù)列的通項(xiàng)公式的運(yùn)用以及數(shù)列求和的運(yùn)用。第一問(wèn)中,利用設(shè)數(shù)列公差為,

由題意可知,即,解得d,得到通項(xiàng)公式,第二問(wèn)中,不等式等價(jià)于,利用當(dāng)時(shí),;當(dāng)時(shí),;而,所以猜想,的最小值為然后加以證明即可。

解:(1)設(shè)數(shù)列公差為,由題意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等價(jià)于,

當(dāng)時(shí),;當(dāng)時(shí),

,所以猜想,的最小值為.     …………8分

下證不等式對(duì)任意恒成立.

方法一:數(shù)學(xué)歸納法.

當(dāng)時(shí),,成立.

假設(shè)當(dāng)時(shí),不等式成立,

當(dāng)時(shí),, …………10分

只要證  ,只要證 

只要證  ,只要證  ,

只要證  ,顯然成立.所以,對(duì)任意,不等式恒成立.…14分

方法二:?jiǎn)握{(diào)性證明.

要證 

只要證  ,  

設(shè)數(shù)列的通項(xiàng)公式,        …………10分

,    …………12分

所以對(duì),都有,可知數(shù)列為單調(diào)遞減數(shù)列.

,所以恒成立,

的最小值為

 

查看答案和解析>>


同步練習(xí)冊(cè)答案