題目列表(包括答案和解析)
(2009天津卷文)(本小題滿分14分)
已知橢圓()的兩個(gè)焦點(diǎn)分別為,過點(diǎn)的直線與橢圓相交于點(diǎn)A,B兩點(diǎn),且
(Ⅰ求橢圓的離心率
(Ⅱ)直線AB的斜率;
(Ⅲ)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對稱,直線上有一點(diǎn)H(m,n)()在的外接圓上,求的值。
(天津卷文)(本小題滿分14分)
已知橢圓()的兩個(gè)焦點(diǎn)分別為,過點(diǎn)的直線與橢圓相交于點(diǎn)A,B兩點(diǎn),且
(Ⅰ求橢圓的離心率;
(Ⅱ)直線AB的斜率;
(Ⅲ)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對稱,直線上有一點(diǎn)H(m,n)()在的外接圓上,求的值。
(2009天津卷文)(本小題滿分14分)
已知橢圓()的兩個(gè)焦點(diǎn)分別為,過點(diǎn)的直線與橢圓相交于點(diǎn)A,B兩點(diǎn),且
(Ⅰ求橢圓的離心率
(Ⅱ)直線AB的斜率;
(Ⅲ)設(shè)點(diǎn)C與點(diǎn)A關(guān)于坐標(biāo)原點(diǎn)對稱,直線上有一點(diǎn)H(m,n)()在的外接圓上,求的值。
(本題總分14分)已知函數(shù)=ax2+x-3,g(x)=-x+4lnx
h(x)=-g(x)
(1)當(dāng)a=1時(shí),求函數(shù)h(x)的極值。
(2)若函數(shù)h(x)有兩個(gè)極值點(diǎn),求實(shí)數(shù)a的取值范圍。
(3)定義:對于函數(shù)F(x)和G(x),若存在直線l:y=kx+b,使得對于函數(shù)F(x)和
G(x)各自定義域內(nèi)的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,則稱直線l:y=kx+b為函數(shù)F(x)和G(x)的“隔離直線”。則當(dāng)a=1時(shí),函數(shù)和g(x)是否存在“隔離直線”。若存在,求出所有的“隔離直線”。若不存在,請說明理由。
(本小題滿分14分)
已知定點(diǎn)A(1,0)和定直線x=-1的兩個(gè)動(dòng)點(diǎn)E、F,滿足AE⊥AF,動(dòng)點(diǎn)P滿足EP∥OA,F(xiàn)O∥OP(其中O為坐標(biāo)原點(diǎn)).
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)B(0,2)的直線l與(1)中軌跡C相交于兩個(gè)不同的點(diǎn)M、N,若∠MAN為鈍角,求直線l的斜率的取值范圍;
(3)過點(diǎn)T(-1,0)作直線m與(1)中的軌跡C交于兩點(diǎn)G、H,問在x軸上是否存在一點(diǎn)D,使△DGH為等邊三角形;若存在,試求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com