題目列表(包括答案和解析)
(本小題滿分13分)
設函數y=f(x)的定義域為(0,+∞),且在(0,+∞)上單調遞增,若對任意x,y∈(0,+∞)都有:f(xy)=f(x)+f(y)成立,數列{an}滿足:a1=f(1)+1,f(-)+f(+)=0.設Sn=aa+aa+aa+…+aa+aa.
(1)求數列{an}的通項公式,并求Sn關于n的表達式;
(2)設函數g(x)對任意x、y都有:g(x+y)=g(x)+g(y)+2xy,若g(1)=1,正項數列{bn}滿足:b=g(),Tn為數列{bn}的前n項和,試比較4Sn與Tn的大小.
(本小題滿分13分)
已知數列{an}的前n項和為Sn,Sn=2-(+1)an(n≥1).
(1)求證:數列{}是等比數列;
(2)設數列{2nan}的前n項和為Tn,An=.試比較An與的大小。
(本小題滿分13分)
已知f(x)=mx(m為常數,m>0且m≠1).
設f(a1),f(a2),…,f(an)…(n∈N?)是首項為m2,公比為m的等比數列.
(1)求證:數列{an}是等差數列;
(2)若bn=an·f(an),且數列{bn}的前n項和為Sn,當m=2時,求Sn;
(3)若cn=f(an)lgf(an),問是否存在m,使得數列{cn}中每一項恒小于它后面的項?若存在,
求出m的范圍;若不存在,請說明理由.
(本小題滿分13分)
已知數列{an}的前n項和為Sn,Sn=2-(+1)an(n≥1).
(1)求證:數列{}是等比數列;
(2)設數列{2nan}的前n項和為Tn,An=.試比較An與的大小。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com