設(shè)點(diǎn)P為曲線y=x3- x +上的任意一點(diǎn).P點(diǎn)處切線傾斜角為α.則α的取值范圍為( ) A.[π.π] B.(.π) C.[0.]∪(π.π) D.[0.]∪[π.π) 查看更多

 

題目列表(包括答案和解析)

設(shè)點(diǎn)P是曲線y=x3x+上的任意一點(diǎn),P點(diǎn)處切線傾斜角為α,則角α的取值范圍是

[  ]

A.[0,∪[,π)

B.[0,∪[,π)

C.[,π)

D.(,]

查看答案和解析>>

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點(diǎn)處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知

(Ⅰ)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

(Ⅱ)設(shè)P(x1,f(x1)),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請結(jié)合(I)中的結(jié)論證明:x1<x3<x2

查看答案和解析>>

定義:已知函數(shù)f(x)與g(x),若存在一條直線y=kx+b,使得對公共定義域內(nèi)的任意實(shí)數(shù)均滿足g(x)≤f(x)≤kx+b恒成立,其中等號在公共點(diǎn)處成立,則稱直線y=kx+b為曲線f(x)與g(x)的“左同旁切線”.已知

(Ⅰ)證明:直線y=x-l是f(x)與g(x)的“左同旁切線”;

(Ⅱ)設(shè)P(x1,f(x1),Q(x2,f(x2))是函數(shù)f(x)圖象上任意兩點(diǎn),且0<x1<x2,若存在實(shí)數(shù)x3>0,使得.請結(jié)合(Ⅰ)中的結(jié)論證明:x1<x3<x2

查看答案和解析>>

已知函數(shù)f(x)=-x3x2,g(x)=aln x,a∈R.
(1)若對任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范圍;
(2)設(shè)F(x)=P是曲線yF(x)上異于原點(diǎn)O的任意一點(diǎn),在曲線yF(x)上總存在另一點(diǎn)Q,使得△POQ中的∠POQ為鈍角,且PQ的中點(diǎn)在y軸上,求a的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)=-x3x2g(x)aln x,aR.

(1)若對任意x[1,e],都有g(x)≥x2(a2)x恒成立,求a的取值范圍;

(2)設(shè)F(x)P是曲線yF(x)上異于原點(diǎn)O的任意一點(diǎn),在曲線yF(x)上總存在另一點(diǎn)Q,使得POQ中的POQ為鈍角,且PQ的中點(diǎn)在y軸上,求a的取值范圍.

 

查看答案和解析>>


同步練習(xí)冊答案