題目列表(包括答案和解析)
解:能否投中,那得看拋物線與籃圈所在直線是否有交點。因為函數(shù)的零點是-2與4,籃圈所在直線x=5在4的右邊,拋物線又是開口向下的,所以投不中。
某城市出租汽車的起步價為10元,行駛路程不超出4km,則按10元的標準收租車費若行駛路程超出4km,則按每超出lkm加收2元計費(超出不足1km的部分按lkm計).從這個城市的民航機場到某賓館的路程為15km.某司機常駕車在機場與此賓館之間接送旅客,由于行車路線的不同以及途中停車時間要轉(zhuǎn)換成行車路程(這個城市規(guī)定,每停車5分鐘按lkm路程計費),這個司機一次接送旅客的行車路程ξ是一個隨機變量,
(1)他收旅客的租車費η是否也是一個隨機變量?如果是,找出租車費η與行車路程ξ的關系式;
(2)已知某旅客實付租車費38元,而出租汽車實際行駛了15km,問出租車在途中因故停車累計最多幾分鐘?這種情況下,停車累計時間是否也是一個隨機變量?
已知點(),過點作拋物線的切線,切點分別為、(其中).
(Ⅰ)若,求與的值;
(Ⅱ)在(Ⅰ)的條件下,若以點為圓心的圓與直線相切,求圓的方程;
(Ⅲ)若直線的方程是,且以點為圓心的圓與直線相切,
求圓面積的最小值.
【解析】本試題主要考查了拋物線的的方程以及性質(zhì)的運用。直線與圓的位置關系的運用。
中∵直線與曲線相切,且過點,∴,利用求根公式得到結(jié)論先求直線的方程,再利用點P到直線的距離為半徑,從而得到圓的方程。
(3)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即,借助于函數(shù)的性質(zhì)圓面積的最小值
(Ⅰ)由可得,. ------1分
∵直線與曲線相切,且過點,∴,即,
∴,或, --------------------3分
同理可得:,或----------------4分
∵,∴,. -----------------5分
(Ⅱ)由(Ⅰ)知,,,則的斜率,
∴直線的方程為:,又,
∴,即. -----------------7分
∵點到直線的距離即為圓的半徑,即,--------------8分
故圓的面積為. --------------------9分
(Ⅲ)∵直線的方程是,,且以點為圓心的圓與直線相切∴點到直線的距離即為圓的半徑,即, ………10分
∴
,
當且僅當,即,時取等號.
故圓面積的最小值.
已知函數(shù) R).
(Ⅰ)若 ,求曲線 在點 處的的切線方程;
(Ⅱ)若 對任意 恒成立,求實數(shù)a的取值范圍.
【解析】本試題主要考查了導數(shù)在研究函數(shù)中的運用。
第一問中,利用當時,.
因為切點為(), 則,
所以在點()處的曲線的切線方程為:
第二問中,由題意得,即即可。
Ⅰ)當時,.
,
因為切點為(), 則,
所以在點()處的曲線的切線方程為:. ……5分
(Ⅱ)解法一:由題意得,即. ……9分
(注:凡代入特殊值縮小范圍的均給4分)
,
因為,所以恒成立,
故在上單調(diào)遞增, ……12分
要使恒成立,則,解得.……15分
解法二: ……7分
(1)當時,在上恒成立,
故在上單調(diào)遞增,
即. ……10分
(2)當時,令,對稱軸,
則在上單調(diào)遞增,又
① 當,即時,在上恒成立,
所以在單調(diào)遞增,
即,不合題意,舍去
②當時,, 不合題意,舍去 14分
綜上所述:
已知曲線上動點到定點與定直線的距離之比為常數(shù).
(1)求曲線的軌跡方程;
(2)若過點引曲線C的弦AB恰好被點平分,求弦AB所在的直線方程;
(3)以曲線的左頂點為圓心作圓:,設圓與曲線交于點與點,求的最小值,并求此時圓的方程.
【解析】第一問利用(1)過點作直線的垂線,垂足為D.
代入坐標得到
第二問當斜率k不存在時,檢驗得不符合要求;
當直線l的斜率為k時,;,化簡得
第三問點N與點M關于X軸對稱,設,, 不妨設.
由于點M在橢圓C上,所以.
由已知,則
,
由于,故當時,取得最小值為.
計算得,,故,又點在圓上,代入圓的方程得到.
故圓T的方程為:
已知中心在原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存過點(2,1)的直線與橢圓相交于不同的兩點,滿足?若存在,求出直線的方程;若不存在,請說明理由.
【解析】第一問利用設橢圓的方程為,由題意得
解得
第二問若存在直線滿足條件的方程為,代入橢圓的方程得
.
因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,
所以
所以.解得。
解:⑴設橢圓的方程為,由題意得
解得,故橢圓的方程為.……………………4分
⑵若存在直線滿足條件的方程為,代入橢圓的方程得
.
因為直線與橢圓相交于不同的兩點,設兩點的坐標分別為,
所以
所以.
又,
因為,即,
所以.
即.
所以,解得.
因為A,B為不同的兩點,所以k=1/2.
于是存在直線L1滿足條件,其方程為y=1/2x
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com