過點A作直線交軸于B.交直線于點C.且∣BC∣=2∣AB∣.求直線的方程. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

   某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現(xiàn)用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(生產能力指一天加工的零件數(shù)).

(Ⅰ)A類工人中和B類工人各抽查多少工人?

(Ⅱ)從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2

表1:

生產能力分組

人數(shù)

4

8

5

3

表2:

生產能力分組

人數(shù)

    6

    y

    36

    18

(ⅰ)先確定,再在答題紙上完成下列頻率分布直方圖。就生產能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?(不用計算,可通過觀察直方圖直接回答結論)

(ii)分別估計類工人和類工人生產能力的平均數(shù),并估計該工廠工人和生產能力的平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表)。

查看答案和解析>>

(本小題滿分12分)在直角坐標系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.

(1)求曲線C1的方程;

(2)設P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于

點A,B和C,D.證明:當P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標之積為定值.

 

查看答案和解析>>

(本小題滿分12分)在直角坐標系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
(1)求曲線C1的方程;
(2)設P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于
點A,B和C,D.證明:當P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標之積為定值.

查看答案和解析>>

(本小題滿分12分)在直角坐標系xOy中,曲線C1的點均在C2:(x-5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
(1)求曲線C1的方程;
(2)設P(x0,y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別與曲線C1相交于
點A,B和C,D.證明:當P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標之積為定值.

查看答案和解析>>

(本小題滿分12分)

已知點,過點作拋物線的切線,切點在第二象限,如圖.

(Ⅰ)求切點的縱坐標;

(Ⅱ)若離心率為的橢圓  恰好經過切點,設切線交橢圓的另一點為,記切線的斜率分別為,若,求橢圓方程.

21(本小題滿分12分)

已知函數(shù) .

(1)討論函數(shù)的單調性;

(2)當時,恒成立,求實數(shù)的取值范圍;

(3)證明:.

22.選修4-1:幾何證明選講

如圖,是圓的直徑,是弦,的平分線交圓于點,,交的延長線于點,于點

(1)求證:是圓的切線;

(2)若,求的值。

23.選修4—4:坐標系與參數(shù)方程

在平面直角坐標系中,直線過點且傾斜角為,以坐標原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為,直線與曲線相交于兩點;

(1)若,求直線的傾斜角的取值范圍;

(2)求弦最短時直線的參數(shù)方程。

24. 選修4-5 不等式選講

已知函數(shù)

   (I)試求的值域;

   (II)設,若對,恒有成立,試求實數(shù)a的取值范圍。

查看答案和解析>>


同步練習冊答案