1.重點:(1)直線和圓的相切.相交圓系方程應用. 使學生掌握相切的幾何特征和代數(shù)特征.過圓上一點的圓的代線方程.弦長計算問題,(2)給學生介紹圓與圓相交的圓系方程以及直線與圓相交的圓系方程.) 查看更多

 

題目列表(包括答案和解析)

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F,過原點和x軸不重合的直線與橢圓E相交于A,B兩點,且|AF|+|BF|=2
2
,|AB|最小值為2.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若圓:x2+y2=
2
3
的切線l與橢圓E相交于P,Q兩點,當P,Q兩點橫坐標不相等時,問:OP與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的右焦點F,過原點和x軸不重合的直線與橢圓E相交于A,B兩點,且|AF|+|BF|=2
2
,|AB|最小值為2.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若圓:x2+y2=
2
3
的切線l與橢圓E相交于P,Q兩點,當P,Q兩點橫坐標不相等時,問:OP與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

已知橢圓E:=1(a>b>0)的右焦點F,過原點和x軸不重合的直線與橢圓E相交于A,B兩點,且|AF|+|BF|=2,|AB|最小值為2.

(Ⅰ)求橢圓E的方程;

(Ⅱ)若圓:x2+y2的切線l與橢圓E相交于P,Q兩點,當P,Q兩點橫坐標不相等時,問:OP與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

已知橢圓E:=1(a>b>0)的右焦點F,過原點和x軸不重合的直線與橢圓E相交于A,B兩點,且|AF|+|BF|=2,|AB|最小值為2.

(Ⅰ)求橢圓E的方程;

(Ⅱ)若圓:x2+y2的切線l與橢圓E相交于P,Q兩點,當P,Q兩點橫坐標不相等時,問:OP與OQ是否垂直?若垂直,請給出證明;若不垂直,請說明理由.

查看答案和解析>>

(本小題滿分12分)

已知拋物線經過橢圓的兩個焦點.設,又不在軸上的兩個交點,若的重心(中線的交點)在拋物線上,

(1)求的方程.

(2)有哪幾條直線與都相切?(求出公切線方程)

 

查看答案和解析>>


同步練習冊答案