科目:czsx 來源:非常講解·教材全解全析 數(shù)學(xué) 九年級下 (配北師大課標(biāo)) 配北師大課標(biāo) 題型:022
在四邊形ABCD中,AB=4,BC=3,CD=12,∠B=90°,如果S四邊形ABCD=36,那么AD等于________.
科目:czsx 來源:2015-2016學(xué)年浙江省紹興市八年級上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在四邊形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.動點P從點D出發(fā),沿射線DA的方向以每秒2兩個單位長的速度運動,動點Q從點C出發(fā),在線段CB上以每秒1個單位長的速度向點B運動,點P,Q分別從點D,C同時出發(fā),當(dāng)點Q運動到點B時,點P隨之停止運動.設(shè)運動的時間為t(秒).
(1)請直接寫出BD= ;AB= ;(4分)
(2)當(dāng)t為何值時,以B,P,Q為頂點的三角形是等腰三角形?(求出一種得4分)
(3)是否存在時刻t,使得點P、Q關(guān)于BD對稱,若存在,請你直接寫出t的值,若不存在,請說明理由.(4分)
科目:gzsx 來源:浙江省臺州中學(xué)2011-2012學(xué)年高二第一次統(tǒng)練數(shù)學(xué)理科試題 題型:013
在空間四邊形ABCD中,AD=BC=2,E、F分別是CD、AB的中點,若EF=,則AD、BC所成的角等于
60°
90°
120°
150°
科目:czsx 來源: 題型:
如圖,在平行四邊形ABCD中,AB=5,BC=10,F為AD的中點,CE⊥AB于E,設(shè)∠ABC=α(60°≤α<90°).
(1)當(dāng)α=60°時,求CE的長;
(2)當(dāng)60°<α<90°時,
①是否存在正整數(shù)k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,請說明理由.
②連接CF,當(dāng)CE2-CF2取最大值時,求tan∠DCF的值.
分析 (1)利用60°角的正弦值列式計算即可得解;
(2)①連接CF并延長交BA的延長線于點G,利用“角邊角”證明△AFG和△CFD全等,根據(jù)全等三角形對應(yīng)邊相等可得CF=GF,AG=CD,再利用直角三角形斜邊上的中線等于斜邊的一半可得EF=GF,再根據(jù)AB、BC的長度可得AG=AF,然后利用等邊對等角的性質(zhì)可得∠AEF=∠G=∠AFG,根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可得∠EFC=2∠G,然后推出∠EFD=3∠AEF,從而得解;
②設(shè)BE=x,在Rt△BCE中,利用勾股定理表示出CE2,表示出EG的長度,在Rt△CEG中,利用勾股定理表示出CG2,從而得到CF2,然后相減并整理,再根據(jù)二次函數(shù)的最值問題解答.
科目:czsx 來源:2008年甘肅省蘭州市初中畢業(yè)升學(xué)統(tǒng)一考試、數(shù)學(xué)試卷 題型:059
如圖,平行四邊形ABCD中,AB⊥AC,AB=1,BC=.對角線AC,BD相交于點O,將直線AC繞點O順時針旋轉(zhuǎn),分別交BC,AD于點E,F(xiàn).
(1)證明:當(dāng)旋轉(zhuǎn)角為90°時,四邊形ABEF是平行四邊形;
(2)試說明在旋轉(zhuǎn)過程中,線段AF與EC總保持相等;
(3)在旋轉(zhuǎn)過程中,四邊形BEDF可能是菱形嗎?如果不能,請說明理由;如果能,說明理由并求出此時AC繞點O順時針旋轉(zhuǎn)的度數(shù).
科目:czsx 來源:山東省東阿縣2012屆九年級中考第二次模擬考試數(shù)學(xué)試題 題型:044
在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13 cm,BC=16 cm,CD=5 cm,AB為⊙O的直徑,動點P,沿AD從點A開始向點D以1 cm/s的速度運動,動點Q沿CB從點C開始向點B以2 cm/s的速度運動.點P、Q分別從A、C兩點同時出發(fā),當(dāng)其中一點停止時,另一點也隨之停止運動.
(1)求⊙O的直徑;
(2)求四邊形PQCD的面積S關(guān)于P、Q點運動的時間t的函數(shù)關(guān)系式,并求出四邊形PQCD為等腰梯形時,四邊形PQCD的面積;
(3)是否存在某一時刻t,使直線PQ與⊙O相切?若存在,求出t的值;若不存在,說明理由.
科目:czsx 來源:三點一測叢書 九年級數(shù)學(xué) 上 (江蘇版課標(biāo)本) 江蘇版課標(biāo)本 題型:047
請看下列例題及解答:
[例]如圖,四邊形ABCD中,AB∥CD,AD=DC=DB=6.5,BC=5,求對角線AC的長.
解答:以D為圓心,AD的長為半徑作⊙D.顯然⊙D經(jīng)過點A、B、C.延長CD交⊙D于點E,連結(jié)AE,根據(jù)本節(jié)《探究體驗》可知四邊形ABCE為等腰梯形,故AE=BC=5.
∵CE為⊙D直徑,∴∠CAE=90°.
在Rt△ACE中,CE=2AD=13,AE=5.
∴AC==12.
請構(gòu)造輔助圓解決下列問題:如圖,在四邊形ABCD中,AB=AC=AD,且∠DBC=2∠BDC.求證:∠DAB=3∠BAC.
科目:czsx 來源:浙江省杭州市蕭山義蓬片2011-2012學(xué)年八年級下學(xué)期能力測試數(shù)學(xué)試題 題型:044
如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16 cm,AB=12 cm,BC=21 cm,動點P從點B出發(fā),沿射線BC的方向以每秒2 cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1 cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).
(1)當(dāng)t為何值時,四邊形PQDC是平行四邊形.
(2)當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60 cm2?
(3)是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若不存在,請說明理由.
科目:czsx 來源:2011-2012學(xué)年浙江杭州蕭山義蓬片八年級下學(xué)期能力測試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發(fā),沿射線BC的方向以每秒2cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).
【小題1】當(dāng)t為何值時,四邊形PQDC是平行四邊形
【小題2】當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60cm2?
【小題3】是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若不存在,請說明理由.
科目:czsx 來源:2011-2012學(xué)年安徽全椒八年級下期末數(shù)學(xué)試卷(滬科版)(帶解析) 題型:解答題
如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發(fā),沿射線BC的方向以每秒2cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).
(1)當(dāng)t為何值時,四邊形PQDC是平行四邊形.
(2)當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60cm2?
(3)是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若不存在,請說明理由.
科目:czsx 來源:2013屆浙江杭州蕭山義蓬片八年級下學(xué)期能力測試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發(fā),沿射線BC的方向以每秒2cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).
1.當(dāng)t為何值時,四邊形PQDC是平行四邊形
2.當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60cm2?
3.是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若不存在,請說明理由.
科目:czsx 來源:2013屆安徽全椒八年級下期末數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題
如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發(fā),沿射線BC的方向以每秒2cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).
(1)當(dāng)t為何值時,四邊形PQDC是平行四邊形.
(2)當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60cm2?
(3)是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若不存在,請說明理由.
科目:czsx 來源:安徽省期末題 題型:解答題
科目:czsx 來源: 題型:
如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發(fā),沿射線BC的方向以每秒2cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).
(1)當(dāng)t為何值時,四邊形PQDC是平行四邊形.
(2)當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60cm2?
(3)是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若
不存在,請說明理由.
科目:czsx 來源: 題型:
如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發(fā),沿射線BC的方向以每秒2cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).
(1)當(dāng)t為何值時,四邊形PQDC是平行四邊形.
(2)當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60cm2?
(3)是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若不存在,請說明理由.
科目:czsx 來源:不詳 題型:解答題
科目:czsx 來源:江蘇省連云港市灌南新集2011屆九年級第一次中考模擬測試數(shù)學(xué)試題 題型:044
如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=3,BC=4,動點P從B點出發(fā),沿線段BC向點C作勻速運動;動點Q從點D出發(fā),沿線段DA向點A作勻速運動.過Q點垂直于AD的射線交AC于點M,交BC于點N.P、Q兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)Q點運動到A點,P、Q兩點同時停止運動.設(shè)點Q運動的時間為t秒.
(1)求NC、MC的長(用含t的代數(shù)式表示);
(2)當(dāng)t為何值時,四邊形PCDQ構(gòu)成平行四邊形?
(3)是否存在某一時刻t,使射線QN恰好將△ABC的面積和周長同時平分?若存在,求出此時t的值;若不存在,請說明理由;
(4)探究:t為何值時,△PMC為等腰三角形?
科目:czsx 來源:江蘇省常熟市實驗協(xié)作區(qū)2011屆九年級第二次模擬考試數(shù)學(xué)試題 題型:044
如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=3,BC=4,動點P從B點出發(fā),沿線段BC向點C作勻速運動;動點Q從點D出發(fā),沿線段DA向點A作勻速運動.過Q點垂直于AD的射線交AC于點M,交BC于點N.P、Q兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)Q點運動到A點,P、Q兩點同時停止運動.設(shè)點Q運動的時間為t秒.
(1)NC=________;MC=________.(用含t的代數(shù)式表示);
(2)當(dāng)t為何值時,四邊形PCDQ構(gòu)成平行四邊形?
(3)是否存在某一時刻t,使射線QN恰好將△ABC的面積和周長同時平分?若存在,求出此時t的值;若不存在,請說明理由;
(4)探究:t為何值時,△PMC為等腰三角形?
科目:czsx 來源:江蘇省連云港市新海實驗中學(xué)2010-2011學(xué)年九年級下學(xué)期第一次模擬數(shù)學(xué)試題 題型:059
如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=3,BC=4,動點P從B點出發(fā),沿線段BC向點C作勻速運動;動點Q從點D出發(fā),沿線段DA向點A作勻速運動.過Q點垂直于AD的射線交AC于點M,交BC于點N.P、Q兩點同時出發(fā),速度都為每秒1個單位長度,當(dāng)Q點運動到A點,P、Q兩點同時停止運動.設(shè)點Q運動的時間為t秒.
(1)求NC、MC的長(用含t的代數(shù)式表示);
(2)當(dāng)t為何值時,四邊形PCDQ構(gòu)成平行四邊形?
(3)是否存在某一時刻t,使射線QN恰好將△ABC的面積和周長同時平分?若存在,求出此時t的值;若不存在,請說明理由;
(4)探究:t為何值時,△PMC為等腰三角形?
科目:gzsx 來源:湖北省荊州中學(xué)2008高考復(fù)習(xí)立體幾何基礎(chǔ)題題庫一(有詳細答案)人教版 人教版 題型:013
在矩形
ABCD中,AB=a,AD=2b,a<b,E、F分別是AD、BC的中點,以EF為折痕把四邊形EFCD折起,當(dāng)∠CEB=90°時,二面角C-EF-B的平面角的余弦值等于A.0
B.
C.
D.