在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維
在數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生的創(chuàng)造性思維是時(shí)代的要求。要培養(yǎng)學(xué)生的創(chuàng)造性思維,就應(yīng)該有與之相適應(yīng)的,能促進(jìn)創(chuàng)造性思維培養(yǎng)的教學(xué)方式。當(dāng)前,數(shù)學(xué)創(chuàng)新教學(xué)方式主要有以下幾種形式:
1 、開(kāi)放式教學(xué)。
這種教學(xué)在通常情況下,由教師通過(guò)開(kāi)放題的引進(jìn),在學(xué)生參與下解決,
使學(xué)生在問(wèn)題解決的過(guò)程中體驗(yàn)數(shù)學(xué)的本質(zhì),品嘗進(jìn)行創(chuàng)造性數(shù)學(xué)活動(dòng)的樂(lè)趣。開(kāi)放式教學(xué)中的開(kāi)放題一般有以下幾個(gè)特點(diǎn)。一是結(jié)果開(kāi)放,一個(gè)問(wèn)題可以有不同的結(jié)果;二是方法開(kāi)放,學(xué)生可以用不同的方法解決這個(gè)問(wèn)題;三是思路開(kāi)放,強(qiáng)調(diào)學(xué)生解決問(wèn)題時(shí)的不同思路。
2 、活動(dòng)式教學(xué)。
這種教學(xué)模式主要是讓學(xué)生進(jìn)行適合自己的數(shù)學(xué)活動(dòng),包括模型制作、
游戲、行動(dòng)、調(diào)查研究等,使學(xué)生在活動(dòng)中認(rèn)識(shí)數(shù)學(xué)、理解數(shù)學(xué)、熱愛(ài)數(shù)學(xué)。
3 、探索式教學(xué)。
采用“發(fā)現(xiàn)式”,引導(dǎo)學(xué)生主動(dòng)參與,探索知識(shí)的形成、規(guī)律的發(fā)現(xiàn)、
問(wèn)題的解決等過(guò)程。
要培養(yǎng)學(xué)生的創(chuàng)造思維能力,應(yīng)當(dāng)在數(shù)學(xué)教學(xué)中充分有效地結(jié)合上述三種形式(但不限于這三種形式),通過(guò)逐步培養(yǎng)學(xué)生的以下各種能力來(lái)實(shí)現(xiàn)教學(xué)目標(biāo):
一 、培養(yǎng)學(xué)生的觀察力。敏銳的觀察力是創(chuàng)造思維的起步器。那么,在課堂中,怎樣培養(yǎng)學(xué)生的觀察力呢?第一,在觀察之前,要給學(xué)生提出明確而又具體的目的、任務(wù)和要求。第二,要在觀察中及時(shí)指導(dǎo)。比如要指導(dǎo)學(xué)生根據(jù)觀察的對(duì)象有順序地進(jìn)行觀察,要指導(dǎo)學(xué)生選擇適當(dāng)?shù)挠^察方法,要指導(dǎo)學(xué)生及時(shí)地對(duì)觀察的結(jié)果進(jìn)行分析總結(jié)等。第三,要科學(xué)地運(yùn)用直觀教具及現(xiàn)代教學(xué)技術(shù),以支持學(xué)生對(duì)研究的問(wèn)題做仔細(xì)、深入地觀察。第四,要努力培養(yǎng)學(xué)生濃厚的觀察興趣。
試題詳情
1993年全國(guó)高考數(shù)學(xué)科命題組就指出:“要考查一些開(kāi)放問(wèn)題”,國(guó)家教委將“數(shù)學(xué)開(kāi)放題”列為九五重點(diǎn)科研項(xiàng)目.相對(duì)于傳統(tǒng)的封閉題嚴(yán)密完整,開(kāi)放題在構(gòu)成問(wèn)題的要素――條件、策略、結(jié)論中有一些是不明確的(分別稱(chēng)為條件開(kāi)放題、策略開(kāi)放題、結(jié)論開(kāi)放題).當(dāng)前數(shù)學(xué)開(kāi)放題之所以引起我們中學(xué)數(shù)學(xué)教師的關(guān)注,我以為一是以實(shí)踐能力、創(chuàng)新意識(shí)的培養(yǎng)為核心的素質(zhì)教育的深入的需要.?dāng)?shù)學(xué)開(kāi)放題對(duì)培養(yǎng)學(xué)生思維的發(fā)散性(結(jié)論開(kāi)放)、聚斂性(條件開(kāi)放)、創(chuàng)造性(策略開(kāi)放),不失為好載體.二是高考命題的導(dǎo)向作用,數(shù)學(xué)開(kāi)放題走進(jìn)高考試卷的需要.三是數(shù)學(xué)走向應(yīng)用的需要.我們的數(shù)學(xué)教育不僅要讓學(xué)生學(xué)會(huì)繼續(xù)深造所必需的數(shù)學(xué)基本知識(shí),基本方法,基本技能,更重要的是讓學(xué)生學(xué)會(huì)用數(shù)學(xué)的眼光看待世界,用數(shù)學(xué)的思維方式去觀察分析現(xiàn)實(shí)社會(huì),去解決現(xiàn)實(shí)生活中的問(wèn)題.
為了滿(mǎn)足上述三方面的需要,必需將開(kāi)放題引進(jìn)課堂教學(xué).本文談對(duì)數(shù)學(xué)開(kāi)放題教學(xué)的一些認(rèn)識(shí),不當(dāng)之處,謹(jǐn)請(qǐng)多多指教.
1、砸破籬笆,讓學(xué)生展開(kāi)想象的翅膀
青少年時(shí)代是一生中最富有活力、充滿(mǎn)想象的時(shí)代.開(kāi)放題往往形式活潑,供學(xué)生思考的角度眾多,思維活動(dòng)的空間寬闊,正好給青少年學(xué)生提供了一個(gè)展翅的舞臺(tái).而封閉題往往形式單一,要求學(xué)生在特定的范圍內(nèi)進(jìn)行定向思維.長(zhǎng)期作這類(lèi)機(jī)械式的思維訓(xùn)練,學(xué)生的思維中將立起一道道難以逾越的籬笆.這樣的教學(xué)活動(dòng),不僅沒(méi)有促進(jìn)學(xué)生進(jìn)一步開(kāi)放自己,反而束縛了他們的思想.通過(guò)開(kāi)放式教學(xué),可以讓學(xué)生砸破這些禁錮思想的籬笆,展開(kāi)想象的翅膀,自由地發(fā)揮自身才華.
根據(jù)我校搬遷前曾有一塊操場(chǎng)需要改造這一實(shí)際,我們編擬:
開(kāi)放題1 我校準(zhǔn)備在長(zhǎng)120米,寬100米的空地上建造操場(chǎng),請(qǐng)同學(xué)們?cè)O(shè)計(jì)操場(chǎng)形狀,思考能否造出滿(mǎn)足以下條件的環(huán)形操場(chǎng).
①每道跑道寬1.22米;②跑道用直線(xiàn)或圓弧吻接;③跑道共八道且內(nèi)圈為300米.
本題有學(xué)生認(rèn)為不能造出滿(mǎn)足要求的操場(chǎng),他認(rèn)為操場(chǎng)應(yīng)由兩個(gè)半圓和一個(gè)矩形構(gòu)成(如圖1),經(jīng)計(jì)算,跑道內(nèi)圈無(wú)論如何達(dá)不到300米的要求.也有學(xué)生認(rèn)為能造出滿(mǎn)足要求的操場(chǎng),可將操場(chǎng)設(shè)計(jì)成如圖2,由四個(gè)四分之一圓弧及五個(gè)矩形構(gòu)成.還有學(xué)生將操場(chǎng)設(shè)計(jì)成如圖3,彎道部分由三段圓弧組成,他們認(rèn)為這樣才是操場(chǎng).更有學(xué)生將操場(chǎng)設(shè)計(jì)成花園式(如圖4),跑道全部由圓弧組成,他們認(rèn)為這樣的操場(chǎng)更美.
開(kāi)放題2 用一塊長(zhǎng)2米,寬1.6米的玻璃加工出橢圓形鏡子(鏡面為完整的一體).①要使鏡面面積最大,該如何設(shè)計(jì)加工鏡子(注S橢=).
本題主要考察學(xué)生如何畫(huà)出橢圓,培養(yǎng)學(xué)生的動(dòng)手能力.可以用硬紙板代替玻璃,讓學(xué)生親手畫(huà)一畫(huà),動(dòng)手截一下.學(xué)生至少可從以下幾個(gè)角度去思考:①建立坐標(biāo)系,寫(xiě)出方程描點(diǎn);②確定焦點(diǎn),長(zhǎng)軸長(zhǎng),由第一定義得到;③用解析幾何課本P116橢圓參數(shù)方程的定義;④用橢圓規(guī)工作原理(P124).
2、傳授定式,幫學(xué)生克服畏懼的心理
開(kāi)放題引入課堂教學(xué)之初,學(xué)生的表現(xiàn)往往士為一是覺(jué)得好奇,感到有趣;二是感到畏懼,不知從何處入手.這就要求我們教師介紹一些典型開(kāi)放題的求解思路,幫學(xué)生建立科學(xué)的思維定式.
⑴尋找充分條件型開(kāi)放題.
開(kāi)放題3 在直四棱柱中(如圖5),當(dāng)?shù)酌嫠倪呅蜛BCD滿(mǎn)足條件 時(shí),有(填上你認(rèn)為正確的一種條件即可,不必考慮所有可能的情形1998高考卷第18題).
這類(lèi)題型,只需找到能使結(jié)論成立的一個(gè)充分條件即可,而不必去尋找結(jié)論成立的充要條件.這類(lèi)問(wèn)題的要求并不高,可考慮特殊值或極端情形,從而找出充分條件.這一點(diǎn),學(xué)生一開(kāi)始往往不習(xí)慣.
⑵“是否存在”型開(kāi)放題.
開(kāi)放題4
設(shè){}是由正數(shù)組成的等比數(shù)列,是其前n項(xiàng)和.是否存在常數(shù)C>0,使得成立?并證明你的結(jié)論(1995高考卷第25題).
這類(lèi)開(kāi)放題的答案,不是肯定就是否定,開(kāi)放度較。簟按嬖凇保褪蔷哂羞m合條件的某種數(shù)學(xué)對(duì)象,無(wú)論用什么方法,只要找出一個(gè)就說(shuō)明存在.若“不存在”,一般需要有嚴(yán)格的推理論證.故這類(lèi)“是否存在”型開(kāi)放題的解決思路一般為,先假設(shè)存在滿(mǎn)足條件的數(shù)學(xué)對(duì)象,如果找出矛盾,說(shuō)明假設(shè)不成立,進(jìn)而否定假設(shè),如果經(jīng)過(guò)嚴(yán)格推理,沒(méi)有找到矛盾,說(shuō)明確實(shí)存在,找出滿(mǎn)足條件的一個(gè)對(duì)象即可.
⑶猜想型開(kāi)放題.
開(kāi)放題5 已知數(shù)列{bn}是等差數(shù)列,b1+b2+……+bn=145, b1=1.①求數(shù)列{bn}的通項(xiàng)bn;②設(shè)數(shù)列{an}的通項(xiàng)an= 其中a>0且a≠1),sn是數(shù)列{an}的前n項(xiàng)和,試比較sn與的大小(1998高考理科第25題).
解答這類(lèi)開(kāi)放題,要求學(xué)生學(xué)會(huì)猜想.牛頓早就說(shuō)過(guò):“沒(méi)有大膽的猜想,就做不出偉大的發(fā)現(xiàn).”美國(guó)數(shù)學(xué)教育家彼利亞在1953年也大聲疾呼:“讓我們教猜測(cè)吧!”可我們?cè)谌粘=虒W(xué)中,往往過(guò)分強(qiáng)調(diào)數(shù)學(xué)學(xué)科的嚴(yán)謹(jǐn)性和科學(xué)性,忽視實(shí)驗(yàn)猜想等合情推理能力的培養(yǎng),讓學(xué)生覺(jué)得數(shù)學(xué)枯燥、無(wú)趣、難學(xué).
我們應(yīng)該教會(huì)學(xué)生如何猜想.教學(xué)生通過(guò)實(shí)驗(yàn)、觀察,進(jìn)行猜想,教學(xué)生通過(guò)對(duì)特例(特殊值)的分析、歸納, 猜想一般的規(guī)律(共性),教學(xué)生通過(guò)比較、概括得到猜想,教學(xué)生對(duì)具體問(wèn)題的特殊解從宏觀上作出估算.先有猜想,再作嚴(yán)密的數(shù)學(xué)證明.這樣“既教猜想,又教證明”,讓學(xué)生體會(huì)到數(shù)學(xué)也是生動(dòng)活潑,充滿(mǎn)激情,并富有哲理的一門(mén)學(xué)科.不至于學(xué)生說(shuō)“過(guò)了幾十年,還做學(xué)習(xí)數(shù)學(xué)的惡夢(mèng)”(徐利治語(yǔ),見(jiàn)文5).
3、開(kāi)展實(shí)驗(yàn),用計(jì)算機(jī)輔助開(kāi)放式教學(xué)
利用計(jì)算機(jī)強(qiáng)大的計(jì)算功能和作圖功能輔助開(kāi)放式教學(xué),有利于改善課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)興趣;有利于“觀察(實(shí)驗(yàn))、猜想、證明(否定)”這一思想方法的運(yùn)用,快捷方便地驗(yàn)證學(xué)生自己作出的猜想,從而充分利用課堂活動(dòng)的時(shí)間.
開(kāi)放題6 (荒島尋寶)從前,有個(gè)年輕人在曾祖父的遺物中發(fā)現(xiàn)一張破羊皮紙,上面指明了一項(xiàng)寶藏,內(nèi)容是這樣的:
“在北緯**,西經(jīng)**,有一座荒島,島的北岸有一片草地,草地上有一棵橡樹(shù),一棵松樹(shù)和一座絞架.從絞架走到橡樹(shù),并記住所走的步數(shù),到了橡樹(shù)向左拐一個(gè)直角,再走相同的步數(shù)并在那里打個(gè)樁.然后回到絞架再朝松樹(shù)走去,同時(shí)記住所走的步數(shù),到了松樹(shù)向右拐一個(gè)直角,再走相同的步數(shù)并在那里也打個(gè)樁,在兩樁連線(xiàn)的正中挖掘,就可獲得寶藏.”
年輕人欣喜萬(wàn)分,租船來(lái)到海島上,找到了那片草地,也找到了橡樹(shù)和松樹(shù),但絞架卻不見(jiàn)了.長(zhǎng)期的日曬雨淋,一切痕跡也不復(fù)存在.年輕人無(wú)從下手,只好空手而返.同學(xué)們,你能用數(shù)學(xué)方法幫助這位年輕人嗎?
本題,學(xué)生往往不知從何處入手.如果我們利用數(shù)學(xué)教學(xué)軟件幾何畫(huà)板制作圖6(設(shè)A,B兩點(diǎn)為橡樹(shù)和松樹(shù)所在地,假設(shè)C為絞架所在地.依題意找到打樁處D,E).不妨先讓我們做一個(gè)小實(shí)驗(yàn).拖動(dòng)點(diǎn)C,我們將會(huì)發(fā)現(xiàn),無(wú)論C在何處,DE中點(diǎn)H是不動(dòng)的.我們問(wèn):這說(shuō)明什么?寶藏是否就在中點(diǎn)H處?
這樣,學(xué)生將會(huì)積極地思索,不難從解析幾何,復(fù)數(shù)、向量、平面幾何角度尋求具體的解決方法.
學(xué)習(xí)“過(guò)拋物線(xiàn) 的頂點(diǎn)O作二條互相垂直的弦OA,OB( ∠AOB = 90°)則弦AB 恒過(guò)定點(diǎn)(2P ,O ) ”之后,引導(dǎo)學(xué)生探討:
開(kāi)放題7 過(guò)拋物線(xiàn) 上任一點(diǎn)C(, ) 作二條互相垂直的弦CA 、CB(∠ACB = 90°) 則弦AB有什么特性? 利用幾何畫(huà)板設(shè)計(jì)如圖 ;
探討過(guò)程為 :
1 、雙擊移動(dòng)按紐 “ 移 動(dòng)C→O ” 顯示直角頂點(diǎn)在原點(diǎn)時(shí),弦AB 恒過(guò)定點(diǎn)(2P ,0) .
2、直角頂點(diǎn)移回C 處,對(duì)AB作軌跡跟蹤,發(fā)現(xiàn)弦AB過(guò)一定點(diǎn).
3、作出該定點(diǎn)D并顯示該點(diǎn)坐標(biāo).
4、尋找關(guān)系:⑴ 顯示C及點(diǎn)C關(guān)于X軸對(duì)稱(chēng)點(diǎn)E的坐標(biāo),我們發(fā)現(xiàn)點(diǎn)D與點(diǎn)E的縱坐標(biāo)相同.⑵ 作出線(xiàn)段ED并顯示長(zhǎng)度,發(fā)現(xiàn) ED = 2P.
5 、改變點(diǎn)C 的位置,或拖拉焦點(diǎn)F,變化P 的長(zhǎng)度再作上述觀察.確認(rèn)我們的結(jié)論正確,從而猜想弦AB恒過(guò)定點(diǎn)D(,) .
6 、用代數(shù)方法證明以上猜想.
參考資料
1、戴再平:數(shù)學(xué)習(xí)題理論,上海教育出版社.1991.4
2、張奠宙:數(shù)學(xué)教育的全球化,開(kāi)放化、信息化、數(shù)學(xué)教育.1998.5
3、王珂:從高考的新題型―開(kāi)放題引起的思考,數(shù)學(xué)通報(bào). 1999.12
4、陳錫龍:設(shè)計(jì)開(kāi)放性的數(shù)學(xué)教學(xué)初探,中學(xué)數(shù)學(xué)教學(xué)參考.1999.10
5、“現(xiàn)代數(shù)學(xué)及其對(duì)中小學(xué)數(shù)學(xué)課程的影響”數(shù)學(xué)家座談會(huì)紀(jì)要
數(shù)學(xué)通報(bào). 1999,11.
試題詳情
例 談
情 境 教 育
內(nèi)容提要:情境教育是素質(zhì)教育的一種教育模式,它服務(wù)于素質(zhì)教育,是實(shí)施素質(zhì)教育的一條有效途徑。創(chuàng)設(shè)良好的教學(xué)情境,能使數(shù)學(xué)教學(xué)達(dá)到意想不到的效果。本文從兩個(gè)定理的教學(xué)情境的創(chuàng)設(shè),以及達(dá)到的教學(xué)效果出發(fā),論述情境教育在素質(zhì)教育中的重要意義。
關(guān)鍵詞:情境教育;情境教學(xué);素質(zhì)教育
一 情境教育
情境教育是由情境教學(xué)發(fā)展而來(lái)的。近半個(gè)世紀(jì)來(lái),中國(guó)的教育受凱烙夫教育思想的影響極深,注重認(rèn)知,忽略情感,學(xué)校成為單一傳授知識(shí)的場(chǎng)所。這就導(dǎo)致了教育的狹隘性、封閉性,影響了人才素質(zhì)的全面提高,尤其是影響了情感意志及創(chuàng)造性的培養(yǎng)和發(fā)展。情境教學(xué)則針對(duì)我國(guó)傳統(tǒng)的注入式教學(xué)造成的中學(xué)數(shù)學(xué)教學(xué)的弊端而提出的,這些弊端是:呆板、繁瑣、片面、低效,以及壓抑學(xué)生興趣、特長(zhǎng)、態(tài)度、志向等素質(zhì)發(fā)展。情境教學(xué)開(kāi)辟了一條促進(jìn)學(xué)生主動(dòng)發(fā)展,人格素質(zhì)全面發(fā)展的有效途徑。
情境教育反映在數(shù)學(xué)教學(xué)中,就是要求教師注重?cái)?shù)學(xué)的文化價(jià)值,創(chuàng)設(shè)有利于當(dāng)今素質(zhì)教育的問(wèn)題情境。在數(shù)學(xué)課中加入數(shù)學(xué)史的講授會(huì)使學(xué)生興趣盎然。任何一個(gè)靜止的事物,如果和它的歷史聯(lián)系起來(lái),就會(huì)對(duì)它有濃厚的興趣。教師講授一條定理,如果不僅僅給出推導(dǎo)和證明,還指出它的思考路線(xiàn),以及學(xué)者研究和發(fā)現(xiàn)定理的經(jīng)過(guò),課堂氣氛會(huì)立刻活躍起來(lái)。教師也可以適當(dāng)介紹和本定理有關(guān)的典故和趣事。學(xué)生開(kāi)闊了眼界,知道一個(gè)定理的發(fā)現(xiàn)過(guò)程竟如此曲折,印象會(huì)非常深刻。講述定理的來(lái)龍去脈,可以開(kāi)拓學(xué)生的思維,使他們從多方面去思考問(wèn)題。教師可以給予一定的物質(zhì)條件,讓學(xué)生自己動(dòng)手實(shí)踐,自主探索與合作交流。
二 兩個(gè)定理的教學(xué)
在初二幾何的勾股定理的教學(xué)中,如果教師講授新課時(shí),照本宣科地將知識(shí)程式化地交給學(xué)生,學(xué)生即使知其然,卻不知其所以然。失去了對(duì)知識(shí)、技能、方法的領(lǐng)悟過(guò)程。不如先給學(xué)生講“勾股定理”的歷史及其一些著名的證明方法,把學(xué)生帶入勾股定理的教學(xué)情境。
教師可介紹:《九章算術(shù)》記載:今有勾三尺,股四尺,問(wèn)為弦?guī)缀巍4鹪唬何宄遊1]。
我國(guó)古代稱(chēng)直角三角形的短直角邊為勾,長(zhǎng)直角邊為股,斜邊為弦[2]。又如《周髀算經(jīng)》稱(chēng):“勾廣三,股修四,徑隅五!闭n本表述為:勾股定理,即直角三角形兩直角邊的平方和等于斜邊的平方。這個(gè)定理,國(guó)外稱(chēng)為:畢達(dá)哥拉斯定理。勾股定理作為幾何學(xué)中一條重要的定理,古往今來(lái),有無(wú)數(shù)人探索它的證明方法。同學(xué)們能否猜出有幾種證法?怎么證?
這個(gè)問(wèn)題一提出,就讓學(xué)生倍感新鮮、有趣。當(dāng)教師告訴學(xué)生它的證明方法有500來(lái)種,更讓他們吃驚。接著教師可以向?qū)W生介紹歷史上幾種著名的證法。如果學(xué)校教學(xué)條件允許的話(huà),教師可發(fā)揮信息技術(shù)的優(yōu)勢(shì),利用現(xiàn)代教育媒體,配合教學(xué)課件,為學(xué)生展現(xiàn)證明的過(guò)程,使學(xué)生印象更深刻。
(課件演示)
(一) 劉徽以割補(bǔ)術(shù)論證這一定理(圖1)
(二) 趙君卿注里記載的證法 (圖2)
2ab+(b-a)2=c2 化簡(jiǎn)為 a2+b2=c2
(三) 利用相似三角形的性質(zhì)的證法 (圖3)
直角三角形ABC,AD為斜邊BC上的高。
利用相似三角形的性質(zhì)可得:
AB∶BC=BD∶AB 即 AB2=BD×BC
AC∶BC=DC∶AC AC2=DC×BC
兩式相加得:AB2+AC2=BD×BC+DC×BC=(BD+DC)BC=BC2
|
|
|
|
|
B 朱出
a 朱方
青入 C b A 青入 朱入
青出 青出
|
|
|
|
|
|
|
|
c a b (圖1)
(圖2) (圖3) (四)如圖一:兩個(gè)正方形邊長(zhǎng)分別是a,b。它們的面積和為 a2+b2 如圖二:在圖一的基礎(chǔ)上,構(gòu)造了以a,b為直角邊的直角三角形,斜邊為c。 在圖二的基礎(chǔ)上把兩個(gè)直角三角形順時(shí)針旋轉(zhuǎn)90°,構(gòu)成了如圖三的正方形,且它的邊長(zhǎng)為c,即面積為c2。 定理得證。
|
|
a c
b a b
|
|
a c b b
a (圖一)
(圖二)
(圖三) 教師在演示課件時(shí),可介紹這幾種證明方法,讓學(xué)生清楚運(yùn)用割補(bǔ)法、等比法、代數(shù)法等可證明定理。學(xué)生們觀看了教師所演示的勾股定理的幾種證法之后,有了一種豁然開(kāi)朗的感覺(jué),并為之驚嘆!產(chǎn)生“竟有此事”之感。如此簡(jiǎn)明、巧妙的證法,且都是非常形象、簡(jiǎn)單。這時(shí),教師可抓住這時(shí)學(xué)生產(chǎn)生驚詫?zhuān)季S正處于積極活動(dòng)狀態(tài)的教學(xué)情境,讓學(xué)生用課前準(zhǔn)備的材料,自己動(dòng)手試一試。 要求:用8個(gè)全等的直角三角形,它們的兩條直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c;3個(gè)邊長(zhǎng)分別為a,b,c的正方形,用拼圖的方法來(lái)證明勾股定理。
(圖4) 教師演示的各種前人證明勾股定理的方法,激發(fā)了學(xué)生的求知欲,他們迫不及待地想自己動(dòng)手嘗試,希望自己也能證明定理。由于有了許多前人的證法作鋪墊,學(xué)生有條件、有能力去思索和探究。學(xué)生們?cè)诮處煹闹笇?dǎo)下,很快就能把定理證出來(lái)(如圖4)。教師也就能在一個(gè)輕松的環(huán)境中完成“勾股定理”的教學(xué)。 因此,教師所創(chuàng)設(shè)的這個(gè)勾股定理的教學(xué)情境,由于引入了勾股定理的歷史背景,及簡(jiǎn)明、巧妙的證法,為學(xué)生學(xué)習(xí)定理提供了環(huán)境,激發(fā)了學(xué)生的學(xué)習(xí)動(dòng)機(jī)和好奇心,培養(yǎng)了學(xué)生的求知欲望。教學(xué)過(guò)程中教師還要求學(xué)生自己動(dòng)手實(shí)踐,使學(xué)生深入其境,真正作為一個(gè)主體去從事研究。調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性和主動(dòng)性[3]。提高學(xué)生運(yùn)用知識(shí)解決實(shí)際問(wèn)題的能力和動(dòng)手能力,學(xué)生在實(shí)踐過(guò)程中,免不了與其他同學(xué)合作、交流,同時(shí)也就培養(yǎng)了學(xué)生的合作精神,在這過(guò)程還能使學(xué)生嘗試失敗和挫折,體驗(yàn)成功的喜悅!所有這些,都對(duì)后續(xù)學(xué)習(xí)起了一定的激勵(lì)作用。所以,實(shí)施素質(zhì)教育,創(chuàng)設(shè)教學(xué)情境至關(guān)重要。 在素質(zhì)教育中,我們提倡提高教學(xué)效率,減輕學(xué)生學(xué)習(xí)負(fù)擔(dān)。所謂教學(xué)效率是學(xué)習(xí)收獲與師生的教學(xué)活動(dòng)量在時(shí)間尺度上的度量。教師只有注重提高課堂教學(xué)效率,才能在保證教學(xué)質(zhì)量的同時(shí),努力減輕數(shù)學(xué)課的學(xué)習(xí)負(fù)擔(dān),讓學(xué)生獲得較好的自由度,發(fā)揮較大的積極性和主動(dòng)性。下面以“三角形中位線(xiàn)定理”一節(jié)為例[4],談?wù)勄榫辰虒W(xué)對(duì)提高課堂教學(xué)效率的積極作用。 在“三角形中位線(xiàn)定理”這一節(jié)中,教科書(shū)中利用“平行線(xiàn)等分線(xiàn)段定理推論2”得到了“三角形中位線(xiàn)定理”。它是運(yùn)用同一法思想來(lái)推理的。初中學(xué)生還不容易接受,但決不能因此而簡(jiǎn)單地把定理告訴學(xué)生,然后就開(kāi)始練習(xí)。我們可以通過(guò)創(chuàng)設(shè)問(wèn)題情境,啟發(fā)誘導(dǎo)引入新知識(shí),激發(fā)學(xué)生的求知欲,讓他們?cè)谄惹幸笾聦W(xué)習(xí)。 在復(fù)習(xí)平行線(xiàn)等分線(xiàn)段定理的推論2后,結(jié)合圖形(圖5)分清定理的條件是AD=BD,DE∥BC。結(jié)論是AE=CE。
(圖5) 提出問(wèn)題后,學(xué)生可能證明結(jié)論有些困難,這時(shí)可稍作引導(dǎo),提醒學(xué)生:“我們現(xiàn)有幾種判定平行的方法?”學(xué)生容易聯(lián)想到同位角相等,內(nèi)錯(cuò)角相等,同旁?xún)?nèi)角互補(bǔ)等方法,可提醒學(xué)生還有:平行四邊形來(lái)判定對(duì)邊平行。并注意條件是AD=BD,AE=CE。這時(shí)同學(xué)們經(jīng)思考有些已找到思路。通常能找到兩種證明方法。 一種是如圖6,延長(zhǎng)DE至F使EF=DE。由ΔADE≌ΔCFE得AD∥CF且AD=CF。從而證得四邊形DBCF是平行四邊形,所以DE∥BC。
(圖6) 教師可用多媒體設(shè)備,演示課件,把兩個(gè)證明過(guò)程演示出來(lái),這樣更吸引了學(xué)生的注意,最后介紹教科書(shū)上的推理過(guò)程。在這樣的教學(xué)過(guò)程中,既激發(fā)了學(xué)生學(xué)習(xí)幾何的興趣,又使學(xué)生對(duì)三角形中位線(xiàn)定理有了深刻的理解。同時(shí)活躍了學(xué)生的思維,收到較好的課堂教學(xué)效果。 但教師應(yīng)不極限于常規(guī)的證法,應(yīng)積極創(chuàng)造條件,要學(xué)生去思索、去研究、去創(chuàng)造。比如三角形中位線(xiàn)定理,可嘗試用向量的方法來(lái)證明。 如圖7,在ΔOAB中,C、D分別為OA、OB的中點(diǎn),設(shè)有向線(xiàn)段 , ∴ 同理:
(圖7) 用向量計(jì)算代替?zhèn)鹘y(tǒng)平面幾何中有些過(guò)于復(fù)雜的演繹推理,這不僅是一種解題方法的變革,更重要的是研究平面幾何的觀點(diǎn)的變革。這種變革,已逐漸成為平面幾何教材的一種流派。用向量法計(jì)算,有時(shí)可避免用演繹法時(shí)所帶來(lái)的某些麻煩。 這里教師還可設(shè)置懸念,為下節(jié)課梯形中位線(xiàn)定理的教學(xué)埋下伏筆。讓學(xué)生親自動(dòng)手畫(huà)梯形,并測(cè)量其上、下底和中位線(xiàn)的長(zhǎng)度,要求學(xué)生探索梯形的上、下底和中位線(xiàn)是否和三角形一樣具有一定的數(shù)量關(guān)系。這樣會(huì)激起學(xué)生繼續(xù)學(xué)習(xí)的熱情。 由于學(xué)生親自做一做,測(cè)一測(cè),猜一猜等實(shí)踐活動(dòng),初步得出結(jié)論:梯形中位線(xiàn)好象平行于兩底并且約等于兩底和的一半。這時(shí)教師可通過(guò)多媒體關(guān)于角的重疊,線(xiàn)段的疊加等演示活動(dòng),讓學(xué)生形象直觀的進(jìn)一步加深對(duì)自己的發(fā)現(xiàn)正確性的強(qiáng)烈印象。教師再給出證明定理的基本策略提示: (一)
證線(xiàn)段平行的途徑和方法: 1、兩條平行線(xiàn)互相平行→證線(xiàn)段平行 2、平行四邊形兩組對(duì)邊平行→證平行四邊形 3、三角形中位線(xiàn)平行底邊→證三角形中位線(xiàn) (二)
證明一線(xiàn)段等于兩線(xiàn)段和的途徑和方法有: 把線(xiàn)段分成兩段使其分別與要證的兩線(xiàn)段相等,或把兩線(xiàn)段合成一線(xiàn)段使其與另一線(xiàn)段相等,再利用三角形全等,或用三角形中位線(xiàn)定理證之。 證明基本策略給出后就給了學(xué)生充分自主的活動(dòng)空間,充分調(diào)動(dòng)了他們學(xué)習(xí)的積極性,使其成為學(xué)習(xí)的主人。因此,學(xué)生得出許多不同的證明方法。 (方法一) (方法二) (方法三)
(方法四) (方法五) 這種讓學(xué)生實(shí)踐、體驗(yàn)的教學(xué)方式與傳統(tǒng)教學(xué)中單純的知識(shí)傳授和結(jié)果測(cè)查截然不同的,它更注重于學(xué)習(xí)的過(guò)程。 學(xué)習(xí)完了定理,如何讓學(xué)生更好地掌握定理呢?數(shù)學(xué)中的定理是一個(gè)有序的結(jié)構(gòu)體系,要掌握一個(gè)定理,必須了解它在定理體系中的地位和作用,以及它們之間的關(guān)系。雜亂無(wú)章的定理,猶如散沙一盤(pán),不便于保持和選取。在教學(xué)中應(yīng)引導(dǎo)學(xué)生按定理的內(nèi)在聯(lián)系將它們組織成一個(gè)邏輯圖,形成定理鏈,使之在定理的結(jié)構(gòu)體系中掌握定理。如“三角形中位線(xiàn)定理”與“梯形中位線(xiàn)定理”的聯(lián)系:(如圖8)當(dāng)梯形的上底等于零時(shí),梯形變成三角形,這時(shí),“梯形中位線(xiàn)定理”與“三角形中位線(xiàn)定理”等價(jià),即“三角形中位線(xiàn)定理”是當(dāng)梯形上底等于零時(shí)的“梯形中位線(xiàn)定理”。教師可以用多媒體課件演示它們之間的關(guān)系,加深學(xué)生對(duì)它們的關(guān)系的理解。
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(圖8) 在此過(guò)程中,教師還可進(jìn)一步拓展定理,提出:“當(dāng)梯形和三角形的中位線(xiàn)所在的直線(xiàn)向上、下平移時(shí),會(huì)產(chǎn)生什么后果?各線(xiàn)段之間有何聯(lián)系?”這樣又創(chuàng)設(shè)了一個(gè)問(wèn)題情境,使學(xué)生很自然地進(jìn)入到另一個(gè)問(wèn)題情境中,教師也就順利地把學(xué)生的思維帶到了“平行線(xiàn)分線(xiàn)段成比例定理及其推論”的教學(xué)中來(lái)。這個(gè)教學(xué)過(guò)程是師生交流、共同發(fā)展的互動(dòng)過(guò)程,教師在教學(xué)過(guò)程中,不僅是傳播知識(shí),更重要的是發(fā)揮育人的功能,培養(yǎng)學(xué)生掌握和利用知識(shí)的素質(zhì)和能力。發(fā)現(xiàn)并激發(fā)學(xué)生的潛能,提高教學(xué)效率,減輕學(xué)生學(xué)習(xí)負(fù)擔(dān)。 三 創(chuàng)設(shè)教學(xué)情境應(yīng)注意的幾個(gè)問(wèn)題 以上兩個(gè)例子的教學(xué)情境的創(chuàng)設(shè)說(shuō)明:情境教學(xué)能促進(jìn)教學(xué)過(guò)程變成一種不斷能引起學(xué)生極大興趣的,向知識(shí)領(lǐng)域不斷探索的活動(dòng)。它借助新異的教學(xué)手段,創(chuàng)設(shè)生動(dòng)有趣的情境,激發(fā)學(xué)生的學(xué)習(xí)情緒,使學(xué)生固有的好奇心、求知欲得以滿(mǎn)足。但應(yīng)注意以下幾個(gè)問(wèn)題: 1、
教師在創(chuàng)設(shè)問(wèn)題情境時(shí),一定要緊扣課題,不要故弄玄虛,離題太遠(yuǎn),要有利于激發(fā)學(xué)生思維的積極性、要直接有利于當(dāng)時(shí)所研究的課題的解決,既要考慮教學(xué)內(nèi)容又要考慮學(xué)生的差異,注意向?qū)W生提示設(shè)問(wèn)的角度和方法。使學(xué)生從教師的情境設(shè)計(jì)教學(xué)中學(xué)到提問(wèn)題的本領(lǐng)。一個(gè)好問(wèn)題應(yīng)該是解答中包含著明顯的數(shù)學(xué)概念與技巧;或問(wèn)題有多種解法;或問(wèn)題能夠推廣各種情形;或問(wèn)題來(lái)自學(xué)生的經(jīng)驗(yàn)和日常生活中[5]。 2、
要啟發(fā)引導(dǎo),保持思維的持續(xù)性。首先要給學(xué)生一定的思考時(shí)間和空間,必要時(shí)可作適當(dāng)?shù)膯l(fā)引導(dǎo),教師的啟發(fā)要遵循學(xué)生思維的規(guī)律,因勢(shì)利導(dǎo)、步步釋疑,切不可不顧學(xué)生的心理狀態(tài)和思維狀態(tài),超前引路,也不可強(qiáng)制學(xué)生按照教師提出的方法和途徑去思考問(wèn)題,越俎代庖。 3、
要不斷向?qū)W生提出新的數(shù)學(xué)問(wèn)題,要提出帶有導(dǎo)向性、難度適宜、啟發(fā)性的問(wèn)題。其實(shí),問(wèn)題并不在多少,而在于是否具有啟發(fā)性,是否是關(guān)鍵性的問(wèn)題,是否能夠觸及問(wèn)題的本質(zhì),并引導(dǎo)學(xué)生深入思考。 4、
鼓勵(lì)學(xué)生大膽發(fā)言,保護(hù)學(xué)生的獨(dú)特見(jiàn)解,即使對(duì)沒(méi)有多大價(jià)值的問(wèn)題,也要盡量找出合理部分,給予及時(shí)的肯定和表?yè)P(yáng)。 四 結(jié)束語(yǔ) 教學(xué)實(shí)踐證明,精心創(chuàng)設(shè)各種教學(xué)情境,能夠激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī)和好奇心,培養(yǎng)學(xué)生的求知欲望,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性和主動(dòng)性,提高學(xué)生運(yùn)用知識(shí)解決實(shí)際問(wèn)題的能力,同時(shí)又使課堂教學(xué)豐富多彩,生動(dòng)活潑,另外,對(duì)教師也提出了更高要求,不僅自己要刻苦鉆研、精心設(shè)計(jì),而且要經(jīng)常向別人學(xué)習(xí),學(xué)習(xí)別人先進(jìn)的教學(xué)方法和設(shè)計(jì)思路,另外還要敢于示范,在學(xué)生面前展示自己的思維過(guò)程,在教學(xué)中應(yīng)打破“老師講,學(xué)生聽(tīng)”的習(xí)慣,變“傳播”為“探究”,充分暴露知識(shí)形成的過(guò)程,促使學(xué)生以探索者的身份去發(fā)現(xiàn)問(wèn)題,總結(jié)規(guī)律,獲得成功,同時(shí)激發(fā)學(xué)生鉆研,從而為學(xué)生將來(lái)成為創(chuàng)造型人才奠定基礎(chǔ)。總之,情境教育是實(shí)施素質(zhì)教育的有效途徑。 參考文獻(xiàn) 【1】白尚恕 《九章算術(shù)》注釋[M] 科學(xué)出版社 1983 【2】人民教育出版社中學(xué)數(shù)學(xué)室
幾何[M] 人民教育出版社 2001,3 【3】燕國(guó)材 素質(zhì)教育概論[M] 廣東教育出版社 2002,1 【4】陳 虹 教學(xué)結(jié)構(gòu)設(shè)計(jì)優(yōu)化一例[J] 中學(xué)數(shù)學(xué)月刊 2000年,第2期 【5】 施文娟 發(fā)揮問(wèn)題情境教育在數(shù)學(xué)教學(xué)中的作用[J] 寧波大學(xué)學(xué)報(bào)(教育科學(xué)版)2001年,第3期 試題詳情
“直線(xiàn)與平面”錯(cuò)解點(diǎn)擊 四川省樂(lè)至縣吳仲良中學(xué) 毛仕理 641500 (0832)3358610 maoshili@126.com 在“直線(xiàn)與平面”內(nèi)容中,為了研究直線(xiàn)與直線(xiàn)之間,直線(xiàn)與平面之間,平面與平面之間的各種關(guān)系,引進(jìn)了一些基本概念和數(shù)學(xué)方法,例如“異面直線(xiàn)”,“直線(xiàn)與平面所成的角”、“二面角”等概念,反證法、同一法等方法,對(duì)于這類(lèi)特定的概念理解不準(zhǔn)確,對(duì)這些方法的掌握存在某些缺陷,解題時(shí)就容易出錯(cuò). 下面通過(guò)幾例,對(duì)產(chǎn)生錯(cuò)誤的解法進(jìn)行分析,研究糾正錯(cuò)誤的方法,從中吸取有益的教訓(xùn),以加深對(duì)知識(shí)的理解,提高解題能力. 例1 證明;斜線(xiàn)上任意一點(diǎn)在平面上的射影,一定在斜線(xiàn)的射影上. 錯(cuò)解 如圖, 對(duì)于平面,直線(xiàn)AB是垂線(xiàn),垂足B是點(diǎn)A的射影;直線(xiàn)AC是斜線(xiàn),C是斜足,直線(xiàn)BC是斜線(xiàn)AC的射影. 在AC上任取一點(diǎn)P,過(guò)P作PO⊥交BC于O, ∴點(diǎn)P在平面上的射影在BC上. 點(diǎn)擊 這樣的證明似乎有點(diǎn)道理,事實(shí)上這些點(diǎn)也是在這條斜線(xiàn)在該平面的射影上,但仔細(xì)分析,這些點(diǎn)在這條斜線(xiàn)在該平面的射影上的理論根據(jù)不足,過(guò)點(diǎn)P作PO⊥交BC于O,恰恰是本題要證明的.是一種易犯的邏輯錯(cuò)誤,許多同學(xué)在解題中往往錯(cuò)而不覺(jué),對(duì)此應(yīng)引起警覺(jué). 正解 AC是平面的斜線(xiàn),點(diǎn)C是斜足,AB⊥,點(diǎn)B是垂足. 則BC是AC在平面上的射影. 在AC上任取一點(diǎn)P,過(guò)點(diǎn)P作PO⊥,垂足為O. ∴AB⊥, ∴PO
∥AB,
∵點(diǎn)P在A、B、C三點(diǎn)確定的平面上,因此,PO平面ABC,
∴ O∈BC. 例2 已知、是兩個(gè)不重合的平面, ①若平面⊥平面,平面⊥平面,則平面∥平面; ②若平面內(nèi)不共線(xiàn)的三個(gè)點(diǎn)到平面的距離相等,則平面∥平面; ③a、b是平面內(nèi)的兩條直線(xiàn),且a∥,b∥,則平面∥平面; 以上正確命題的個(gè)數(shù)為( ). (A)O個(gè) (B)1個(gè) (C)2個(gè) (D)3個(gè) 錯(cuò)解 三個(gè)命題都正確,選(D). 點(diǎn)擊 產(chǎn)生錯(cuò)誤的原因是對(duì)問(wèn)題不能全面的分析,缺乏把握空間元素位置關(guān)系的能力,不是用特殊代替一般,就是用一般統(tǒng)蓋“特殊”.如判斷①、②是真命題,只是考慮了圖1與圖2的情況,而忽略了圖3與圖4的情況. (1)
(2)
(3) (4) 而判斷③是真命題,則是對(duì)平面與平面平行的判定定理:“如果一個(gè)平面內(nèi)的兩條相交直線(xiàn)都平行于另一個(gè)平面,那么這兩個(gè)平面平行”沒(méi)有真正理解,用任意兩條直線(xiàn)代替了定理中的特指條件“兩條相交直線(xiàn)”. 正解 因?yàn)槿齻(gè)命題都不正確,所以選(A). 例3 如圖 E1、E2、F1、F2、G1、G2、H1、H2分別是空間四邊形ABCD的邊AB、BC、CD、DA上的三等分點(diǎn),求證:E1H1,與F1G2是異面直線(xiàn). 錯(cuò)證1 (直接法) ①連BD,由題設(shè)=,=, ∴ E1H1與BD不平行,設(shè)其交點(diǎn)為P, 則P∈BD. ∵ ==, 則 F1G2∥BD,∴ PF1G2. ②又E1P平面BCD,且E1∈E1P,
∴ E1平面BCD. 故平面BCD內(nèi)一點(diǎn)P與平面BCD外一點(diǎn)E1的連線(xiàn)E1P(即E1H1)與平面BCD內(nèi)不過(guò)P點(diǎn)的直線(xiàn)F1G1是異面直線(xiàn). 錯(cuò)證2 (反證法) 設(shè)E1H1與F1G2不是異面直線(xiàn),則E1H與F1G相交或E1H1∥F1G2. ①設(shè)E1H1
∩F1G2=P, ∵E1H
平面ABD,F(xiàn)1G 平面CBD, 則E1H1與F1G2的公共點(diǎn)P應(yīng)在平面ABD與平面CBD的交線(xiàn)BD上, 則F1G2∩ BD=P,這與F1G2∥BD (∵△CBD中,==)矛盾,
∴ E1H1與F1G2不相交. ②設(shè)E1H1∥F1G2, ∵ F1G2∥BD,由公理4知 E1H1∥BD,這與E1H1
BD=P(∵在△ABD中,=,=,∴E1H1與BD不平行,必相交于一點(diǎn)P)矛盾,
∴ E1H1與F1G2不平行. 綜合(1)、(2)知E1H1與F1G2是異面直線(xiàn). 點(diǎn)擊 采用證法1時(shí),有些同學(xué)往往忽略強(qiáng)調(diào)點(diǎn)P在平面CBD上但不在直線(xiàn)F1G2上,且點(diǎn)E1在直線(xiàn)E1P上但不在平面CBD上,只證E1H1與F1G2無(wú)公共點(diǎn)的一面,而忽視它們不在同一平面上,便得出E1H1與F1G2是異面直線(xiàn)的結(jié)論,這是對(duì)其判定定理的片面理解,因而是錯(cuò)誤的. 在采用證法2時(shí),易犯的錯(cuò)誤也是不全面,只排除了E1H1與F1G2不可能相交而忽略了還應(yīng)排除它們平行的可能.因此,一定要深刻理解異面直線(xiàn)的定義,克服證題中的片面性. 例4 在正方體ABCD―A1B1C1D1中,求它的對(duì)角線(xiàn)BD1與平面A1B1CD所成的角. 錯(cuò)解 連結(jié)A1C交BD1于E,則∠D1EA為BD1與平面A1B1CD所成角.設(shè)正方體的邊長(zhǎng)為a. 則A1E=D1E=a.又 A1D1=a, 在△A1ED1中,由余弦定理得 cos∠A1ED1= ===
∴∠A1ED1=arccos,即BD1與平面A1B1CD所成角為arccos. 點(diǎn)擊 以上證法的錯(cuò)誤在于,∠A1ED1不是直線(xiàn)BD1與平面A1B1CD所成的角.平面的一條斜線(xiàn)與它在平面上的射影所成的銳角,叫做這條直線(xiàn)與這個(gè)平面所成的角,本題中D1A1不垂直于平面A1B1CD,所以A1E不是D1E在平面A1B1CD內(nèi)的射影.正是對(duì)“直線(xiàn)在平面內(nèi)的射影”這個(gè)概念理解不清,導(dǎo)致了以上錯(cuò)誤,所以在解此類(lèi)題時(shí),一定要先找出斜足,再作出垂足,垂足與斜足連線(xiàn)才得射影. 正解 ∵A1B1⊥平面A1ADD1, 又A1B1平面A1B1CD ∴平面A1ADD1⊥平面A1B1CD. 連結(jié)AD1交A1D于O,則D1O⊥A1D, ∴D1O⊥平面A1B1CD. 連A1C交BD1于E,連OE,則OE為D1E在平面A1B1CD內(nèi)的射影, ∴∠D1EO為BD1與平面A1B1CD所成的角. 設(shè)正方體的邊長(zhǎng)為a, 則D1O=a, OE=AB=a, 在RtD1OE中, tan∠D1EO==,
∴ ∠D1E0=aretan,即BD1與平面A1B1CD所成的角為arctan. 例5 已知,AB是半徑為R的⊙O的直徑,0C⊥AB,P、Q是圓上兩點(diǎn),且∠AOP=300,∠COQ=450,沿OC折疊使半圓面成一直二面角(如圖),求P、Q兩點(diǎn)間的距離. 錯(cuò)解 在平面AOC內(nèi),過(guò)點(diǎn)P作PD⊥OC于D, ∵ 平面AOC⊥平面BOC,則PD⊥平面BOC,連結(jié)DQ,
∴DQ 平面BOC,∠PDQ是直二面角A―O―CB的平面角, ∴∠PDQ=900. ∵∠AOP=300, ∴∠POD=600. 在Rt△POD中, PD=Rsin600=R, 在Rt△DOQ中, DQ=Rsin450=R, ∴在Rt△PDQ中,PQ===,
即P、Q兩點(diǎn)間的距離是. 點(diǎn)擊 此證法的錯(cuò)誤在于對(duì)二面角的平面角理解有誤.判定一個(gè)角是否是二面角的平面角,必須同時(shí)滿(mǎn)足三個(gè)條件:①頂點(diǎn)在棱上;②角的兩邊分別在兩個(gè)半平面內(nèi);③這兩條射線(xiàn)都必須垂直于棱.誤解中忽視了條件③中的“都”字,事實(shí)上,DQ與OC不垂直,這再次提醒我們必須搞清空間每個(gè)元素的確切含義,概念一定要清楚,解題過(guò)程中要嚴(yán)格按定義要求落實(shí),不能隨心所欲. 正解 同錯(cuò)解,得PD=R. 又0D=R.在△0DQ中,由余弦定理得 DQ2=0D2+0Q2一20D?OQcos450 ==R2 在Rt△PDQ中,由勾股定理,得PQ= ==. 故P、Q兩點(diǎn)之間的距離為. 試題詳情
西南師大附中2008―2009學(xué)年度上期期末考試 高一化學(xué)試題 (總分:150分 考試時(shí)間:120分鐘) 注意事項(xiàng): 1.答卷前考生務(wù)必將自己的班級(jí)、姓名、學(xué)號(hào)和考試科目用鋼筆、鉛筆分別填在機(jī)讀卡和第II卷密封線(xiàn)內(nèi)。 2.第I卷每小題選出答案后,用鉛筆把機(jī)讀卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案,不能答在試題卷上。 3.第II卷用鋼筆或圓珠筆直接答在答題卷上。 4.考試結(jié)束,將機(jī)讀卡和答題卷上交(第I卷和第II卷自己保留好,以備評(píng)講) 第Ⅰ卷 選擇題(共72分) 相對(duì)原子質(zhì)量: H 1 He 4 C
12 N 14 O 16 Na 23 F 19 Al 27 Cl 35.5
K 39 Mn 55 Fe 56 Cu 64 Br 80 Ag 108 試題詳情
高二化 學(xué) 試 題(B卷) 注意事項(xiàng): 1. 本試卷分為第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,第Ⅰ卷 54分,第Ⅱ卷
46分,共100分,考試時(shí)間90分鐘。 2.答第Ⅰ卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考試科目用鉛筆涂寫(xiě)在答題卡上。 3.答第Ⅰ卷時(shí),每小題選出答案后,用鉛筆把答題卡上對(duì)應(yīng)的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案,不能寫(xiě)在試卷上。答第Ⅱ卷時(shí),用藍(lán)、黑鋼筆或圓珠筆直接答在試卷上。 相對(duì)原子質(zhì)量:H1 C12 N14
O16 F19 Na23 Mg24 Al27 P31
S32 Cl35.5 K39 Ca40 Mn55 Fe56 Cu64
Zn65 Br80 Ag108 I127 第Ⅰ卷(選擇題 共54分) 試題詳情
2008年哈九中第五次月考語(yǔ)文試題
2008年12月29日 本試卷分第Ⅰ卷和第Ⅱ卷兩部分,共150分,考試時(shí)間7:40――10:00,140分鐘。 祝各位考生考試順利! 第Ⅰ卷(選擇題共30分) 注意事項(xiàng): 1. 答題前,考生務(wù)必用直徑0.5毫米黑色墨水簽字筆將自己的姓名、準(zhǔn)考證號(hào)、科目涂寫(xiě)在答題卡上,并在規(guī)定位置粘貼考試用條形碼。請(qǐng)認(rèn)真核準(zhǔn)條形碼上的準(zhǔn)考證號(hào)、姓名和科目。 2. 每小題選出答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目答案標(biāo)號(hào)涂黑。如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào)。答案在試卷上的無(wú)效。 試題詳情
| | | | | | | | | | | | | | | | | |