姜堰市2008~2009學(xué)年度第一學(xué)期期中考試
高 三 數(shù) 學(xué) 試 題(文)
2008.11
(總分:160分 考試時(shí)間:120分鐘)
命題人:黃寶圣 邱曉升 審核人:竇如強(qiáng)
一、填空題
1.設(shè)集合,則= ▲ .
2.函數(shù)的最小正周期是 ▲ .
3.已知復(fù)數(shù)滿(mǎn)足(1+i)z=1-i,則z= ▲ .
4.不等式的解集是 ▲ .
5.若,則的最小值為 ▲ .
6.下圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是 ▲ .
主視圖 左視圖 俯視圖
7.若向量滿(mǎn)足,且與的夾角為,則= ▲ .
8.已知函數(shù)則的值是 ▲ .
9.方程的根,,則 ▲ .
10.若函數(shù)在區(qū)間上為單調(diào)增函數(shù),則實(shí)數(shù)的取值范圍是
▲ .
11.是遞減的等差數(shù)列,若,則前 ▲ 項(xiàng)和最大.
12.已知,則 ▲ .
13.已知函數(shù)f(x)的定義域?yàn)?sub>,部分對(duì)應(yīng)值如下表
x
-2
0
4
f(x)
1
-1
1
為的導(dǎo)函數(shù),函數(shù)的圖象如圖所示,若兩正數(shù)a,b滿(mǎn)足f(
14.已知:M={a|函數(shù)在[]上是增函數(shù)},N={b|方程有實(shí)數(shù)解},設(shè)D=,且定義在R上的奇函數(shù)在D內(nèi)沒(méi)有最小值,則m的取值范圍是 ▲ .
二、解答題
15.(本題滿(mǎn)分14分)
已知向量,令,
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),求函數(shù)f(x)的值域.
16.(本題滿(mǎn)分14分)
在幾何體ABCDE中,∠BAC=,DC⊥平面ABC,EB⊥平面ABC,F(xiàn)是BC的中點(diǎn),AB=AC=BE=2,CD=1
(1)求證:DC∥平面ABE;
(2)求證:AF⊥平面BCDE;
(3)求證:平面AFD⊥平面AFE.
17.(本題滿(mǎn)分14分)
某觀(guān)測(cè)站C在城A的南偏西25°的方向上,由A城出發(fā)有一條公路,走向是南偏東50°,在C處測(cè)得距C為km的公路上B處,有一人正沿公路向A城走去,走了
18.(本題滿(mǎn)分16分)
已知x=-1是的一個(gè)極值點(diǎn)
(1)求的值;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)若對(duì)時(shí),f(x)>恒成立,求c的取值范圍.
19.(本題滿(mǎn)分16分)
已知二次函數(shù)和函數(shù),
(1)若為偶函數(shù),試判斷的奇偶性;
(2)若方程有兩個(gè)不等的實(shí)根,則
①證明函數(shù)在(-1,1)上是單調(diào)增函數(shù);
②若方程的兩實(shí)根為,求使成立的的取值范圍.
20.(本題滿(mǎn)分16分)
已知數(shù)列{an}和{bn}滿(mǎn)足:,其中λ為實(shí)數(shù),n為正整數(shù).
(1)若數(shù)列{an}前三項(xiàng)成等差數(shù)列,求的值;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(3)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和.是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有a<Sn<b?若存在,求λ的取值范圍;若不存在,說(shuō)明理由.
姜堰市2008~2009學(xué)年度第一學(xué)期期中考試
2008.11
一、填空題
⒈ ⒉ ⒊-i ⒋ ⒌
⒍ ⒎ ⒏ ⒐ ⒑
⒒14 ⒓ ⒔ ⒕m>
二、解答題
⒖解:(Ⅰ)
……(4分)
∵函數(shù)的單調(diào)增區(qū)間為,
∴,∴,
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為,……(8分)
(Ⅱ)當(dāng)時(shí),,∴
∴函數(shù)f(x)的值域?yàn)?sub>……(14分)
⒗解:(Ⅰ) ∵DC⊥平面ABC,EB⊥平面ABC
∴DC//EB,又∵DC平面ABE,EB平面ABE,∴DC∥平面ABE……(4分)
(Ⅱ)∵DC⊥平面ABC,∴DC⊥AF,又∵AF⊥BC,∴AF⊥平面BCDE……(8分)
(Ⅲ)由(2)知AF⊥平面BCDE,∴AF⊥EF,在三角形DEF中,由計(jì)算知DF⊥EF,
∴EF⊥平面AFD,又EF平面AFE,∴平面AFD⊥平面AFE.……(14分)
⒘解:根據(jù)題意得,BC=km,BD=
設(shè)∠ACD=α,∠CDB=β
在△CDB中,由余弦定理得
,所以
于是…………(7分)
在△ACD中,由正弦定理得
答:此人還得走km到達(dá)A城……(14分)
⒙解:(1) 因x=-1是的一個(gè)極值點(diǎn)
∴
即 2+b-1=0
∴b= -1,經(jīng)檢驗(yàn),適合題意,所以b= -1.……(5分)
(2)
∴>0
∴ >0
∴x>
∴函數(shù)的單調(diào)增區(qū)間為……(10分)
(3)對(duì)時(shí),f(x)>c-4x恒成立
∴即對(duì)時(shí),f(x) +4x >c恒成立
令=
==0
∴或(舍)
∴在上單調(diào)遞減,在上單調(diào)遞增。
∴在x=時(shí)取最小值5-
∴C<5-……………………………………(16分)
⒚解:(Ⅰ)∵為偶函數(shù),∴,∴,∴
∴,∴函數(shù)為奇函數(shù);……(4分)
(Ⅱ)⑴由得方程有不等實(shí)根
∴△及得即
又的對(duì)稱(chēng)軸
故在(-1,1)上是單調(diào)函數(shù)……………………………………………(10分)
⑵是方程(*)的根,∴
∴,同理
∴
同理
要使,只需即,∴
或即,解集為
故的取值范圍……………………(16分)
⒛(Ⅰ)證明:,
由條件可得,所以……(4分)
(Ⅱ)解:因?yàn)閎n+1=(-1)n+1[an+1-3(n-1)+9]=(-1)n+1(an-2n+6)
=(-1)n?(an-3n+9)=-bn
又b1=,所以
當(dāng)λ=-6時(shí),bn=0(n∈N+),此時(shí){bn}不是等比數(shù)列,
當(dāng)λ≠-6時(shí),b1=≠0,由上可知bn≠0,∴(n∈N+).
故當(dāng)λ≠-6時(shí),數(shù)列{bn}是以-(λ+6)為首項(xiàng),-為公比的等比數(shù)列.……(10分)
(Ⅲ)由(Ⅱ)知,當(dāng)λ=-6,bn=0,Sn=0,不滿(mǎn)足題目要求.
∴λ≠-6,故知bn= -(λ+6)?(-)n-1,于是可得
當(dāng)n為正奇數(shù)時(shí),1<f(n)
∴f(n)的最大值為f(1)=,f(n)的最小值為f(2)= ,
于是,由①式得a<-(λ+6)<
當(dāng)a<b
當(dāng)b>
且λ的取值范圍是(-b-6, -
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com