試卷類型:A

2009年廣東省廣州市普通高中畢業(yè)班綜合測試(二)

數(shù)  學(文科)

                                                                   2009.4

本試卷共4頁,21小題, 滿分150分。 考試用時120分鐘。

注意事項:

1.答卷前,考生務必用2B鉛筆在“考生號”處填涂考生號,用黑色字跡鋼筆或簽字筆將自己所在的市、縣/區(qū)、學校,以及自己的姓名和考生號、試室號、座位號填寫在答題卡上。用2B鉛筆將試卷類型(A)填涂在答題卡相應位置上。

2.選擇題每小題選出答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑,如需改動,用橡皮擦干凈后,再選涂其他答案,答案不能答在試卷上。

3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)的相應位置上;如需改動,先劃掉原來的答案,然后再寫上新的答案;不準使用鉛筆和涂改液。不按以上要求作答的答案無效。

4.作答選做題時,請先用2B鉛筆填涂選做題的題號(或題組號)對應的信息點,再作答。漏涂、錯涂、多涂的,答案無效。

5.考生必須保持答題卡的整潔。考試結束后,將試卷和答題卡一并交回。

參考公式:錐體的體積公式, 其中是錐體的底面積,是錐體的高.

球的表面積公式,其中為球的半徑.

一、選擇題:本大題共10小題,每小題5分,滿分50分.在每小題給出的四個選項中,只有一項是符合題目要求的.                                                

1.已知全集,集合,,則

試題詳情

A.          B.        C.           D.

試題詳情

2.如果復數(shù)是純虛數(shù),則實數(shù)的值為

A.0                 B.2                    C.0或3            D.2或3

試題詳情

3.已知函數(shù) 則函數(shù)的零點個數(shù)為

A.1                 B.2                    C.3                D.4

試題詳情

4.命題“,”的否定是

試題詳情

A.,≥0                    B.,

試題詳情

C.≥0                   D.,

試題詳情

5.在空間直角坐標系中,以點,,為頂點的是以為底邊的等腰三角形,則實數(shù)的值為

試題詳情

A.             B.2              C.6               D.2或6

試題詳情

6.如圖1所示的圖形是由若干個小正方體所疊成的幾何體的側(左)視圖與俯視圖,其中俯視圖的小正方形中的數(shù)字表示該幾何體在同一位置上疊放的小正方體的個數(shù),則這個幾何體的正(主)視圖是

試題詳情

 

 

 

 

    A.                B.                 C.                 D.

試題詳情

7.曲線在點處的切線與軸及直線所圍成的三角形的面積為

試題詳情

A.             B.              C.              D.

試題詳情

8.已知圓與圓關于直線對稱,則直線的方程為

試題詳情

A.  B.        C.        D.

試題詳情

9.在長為1的線段上任取兩點,則這兩點之間的距離小于的概率為

試題詳情

A.             B.               C.              D.

試題詳情

10.在平面內(nèi)有條直線,其中任何兩條不平行,任何三條不過同一點,若這條直線把平面分成個平面區(qū)域,則等于

A.18             B.22               C.24              D.32

 

(一)必做題(11~13題)

試題詳情

二、填空題:本大題共5小題,考生作答4小題,每小題5分,滿分20分.

12.在某項才藝競賽中,有9位評委,主辦單位規(guī)定計算       參賽者比賽成績的規(guī)則如下:剔除評委中的一個最高分和一個最低分后,再計算其他7位評委的平均分作為此參賽者的比賽成績.現(xiàn)有一位參賽者所獲9位評委一個最高分為86分、一個最低分為45分,若未剔除最高分與最低分時9位評委的平均分為76分,則這位參賽者的比賽成績?yōu)?u>  ?? 分.

試題詳情

13.在中,已知,則 的最大值為       ,此時角的大小為   ?   

(二)選做題(14~15題,考生只能從中選做一題)                          

試題詳情

14.(幾何證明選講選做題)如圖3所示,在四邊形中,,,則的值為             

試題詳情

15.(坐標系與參數(shù)方程選做題) 直線被圓為參數(shù))所截得的弦長為              

 

試題詳情

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題滿分12分)

試題詳情

已知向量,,設函數(shù)

試題詳情

(1)求函數(shù)的值域;

試題詳情

(2)已知銳角的三個內(nèi)角分別為,求 的值.

 

試題詳情

17.(本小題滿分12分)

試題詳情

已知實數(shù),

試題詳情

(1)求直線不經(jīng)過第四象限的概率;

試題詳情

(2)求直線與圓有公共點的概率.

 

試題詳情

18.(本小題滿分14分)

試題詳情

在長方體中,,過、、

試題詳情

三點的平面截去長方體的一個角后,得到如圖4所示的幾何體

試題詳情

,且這個幾何體的體積為

試題詳情

(1)證明:直線平面;

試題詳情

(2)求棱的長;

試題詳情

(3)求經(jīng)過四點的球的表面積.

 

 

 

 

試題詳情

19.(本小題滿分14分)

試題詳情

    已知橢圓的離心率,且經(jīng)過點

試題詳情

    (1)求橢圓的方程;

試題詳情

    (2)設是橢圓的左焦點,判斷以為直徑的圓與以橢圓長軸為直徑的圓的位置關系,并說明理由.

 

 

 

 

 

 

 

 

試題詳情

20.(本小題滿分14分)

試題詳情

已知等比數(shù)列的前項和為,若,,成等差數(shù)列,試判斷,是否成等差數(shù)列,并證明你的結論.

 

 

 

 

 

 

試題詳情

21.(本小題滿分14分)

試題詳情

已知函數(shù),,其中

試題詳情

(1)若是函數(shù)的極值點,求實數(shù)的值;

試題詳情

(2)若對任意的為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2009年廣州市普通高中畢業(yè)班綜合測試(二)

試題詳情

說明:1.參考答案與評分標準指出了每道題要考查的主要知識和能力,并給出了一種或幾種解法供參考,如果考生的解法與參考答案不同,可根據(jù)試題主要考查的知識點和能力比照評分標準給以相應的分數(shù).

2.對解答題中的計算題,當考生的解答在某一步出現(xiàn)錯誤時,如果后繼部分的解答未改變該題的內(nèi)容和難度,可視影響的程度決定后繼部分的得分,但所給分數(shù)不得超過該部分正確解答應得分數(shù)的一半;如果后繼部分的解答有較嚴重的錯誤,就不再給分.

3.解答右端所注分數(shù),表示考生正確做到這一步應得的累加分數(shù).

4.只給整數(shù)分數(shù),選擇題和填空題不給中間分.

 

一、選擇題:本大題考查基本知識和基本運算.共10小題,每小題5分,滿分50分.

 

題號

1

2

3

4

5

6

7

8

9

10

答案

B

A

C

C

D

A

B

D

C

B

 

二、填空題:本大題共5小題,每小題5分,滿分20分.其中14~15題是選做題,考生只能選做一題,兩題全答的,只計算前一題得分.第13題第1個空3分,第2個空2分.

11.0         12.79         13.        14.1       15.6

三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.

16.(本小題主要考查三角函數(shù)性質和三角函數(shù)的基本關系等知識,考查化歸與轉化的數(shù)學思想方法,以及運算求解能力)

解:(1)

                 .                     
    ∵R,

∴函數(shù)的值域為.                                      

 

(2)∵,,

都是銳角,

.             

                                          

                             

               

的值為.                             

 

17.(本小題主要考查古典概型等基礎知識,考查化歸和轉化、分類與整合的數(shù)學思想方法,以及簡單的推理論證能力)

解:由于實數(shù)對的所有取值為:,,,,,,,,,,,,,,,,共16種.                                         

設“直線不經(jīng)過第四象限”為事件,“直線與圓有公共點”為事件.                                                 

(1)若直線不經(jīng)過第四象限,則必須滿足             

即滿足條件的實數(shù)對,,,,共4種. 

故直線不經(jīng)過第四象限的概率為.                     

(2)若直線與圓有公共點,則必須滿足≤1,即

                                                               

 

,則符合要求,此時實數(shù)對()有4種不同取值;

,則符合要求,此時實數(shù)對()有2種不同取值;

,則符合要求,此時實數(shù)對()有2種不同取值;

,則符合要求,此時實數(shù)對()有4種不同取值.

∴滿足條件的實數(shù)對共有12種不同取值.                     

故直線與圓有公共點的概率為.            

 

18.(本小題主要考查空間線面關系、幾何體的表面積與體積等知識,考查數(shù)形結合的數(shù)學思想方法,以及空間想象能力、運算求解能力)

(1)證法1:如圖,連結,

是長方體,

∴四邊形是平行四邊形.

平面,平面,

平面.                                           

證法2:∵是長方體,

∴平面平面

平面,平面,

平面.                                            

(2)解:設,∵幾何體的體積為

,                        

,解得

的長為4.                                                  

 

 

 

(3)如圖,連結,設的中點為,連

是長方體,∴平面

平面,∴

.同理

∴經(jīng)過,四點的球的球心為點.                   

.                 

故經(jīng)過,,四點的球的表面積為.                 

 

19.(本小題主要考查橢圓、圓的方程和圓與圓的位置關系等基礎知識,考查數(shù)形結合思想,以及運算求解能力)

解:(1)∵橢圓的離心率為,且經(jīng)過點,

                                                

解得

∴橢圓的方程為.                                   

(2)∵,,∴

∴橢圓的左焦點坐標為.                                  

以橢圓的長軸為直徑的圓的方程為,圓心坐標是,半徑為2.

為直徑的圓的方程為,圓心坐標是,半徑為.

∵兩圓心之間的距離為,

故以為直徑的圓與以橢圓長軸為直徑的圓內(nèi)切.                  

 

 

20.(本小題主要考查等差數(shù)列、等比數(shù)列的通項公式與前項求和公式等知識,考查化歸與轉化、分類與整合的數(shù)學思想方法,以及推理論證能力和運算求解能力)

解:設等比數(shù)列的首項為,公比為,           

,成等差數(shù)列,

.                                             

,,∴

解得.                                          

時,∵,,,         

∴當時,,,不成等差數(shù)列.                      

時,,成等差數(shù)列.下面給出兩種證明方法.

證法1:∵

                          

                         

                         

                          ,

∴當時,成等差數(shù)列.                     

證法2:∵,

, 

∴當時,,,成等差數(shù)列.                

 

21.(本小題主要考查函數(shù)的性質、函數(shù)與導數(shù)等知識,考查化歸與轉化、分類與整合的數(shù)學思想方法,以及抽象概括能力、推理論證能力和運算求解能力)

(1)解法1:∵,其定義域為,         

.                                            

是函數(shù)的極值點,

,即,                                          

,∴

經(jīng)檢驗,當時,=1是函數(shù)的極值點,

.        ?                                           

解法2:∵,其定義域為,               

.                                            

,即,整理得,

的兩個實根(舍去),,

變化時,的變化情況如下表:


同步練習冊答案