絕密★啟用前 試卷類型:A
珠海市2009年高三年級第二次調研考試
高三理科數學
2009.5
本試卷分選擇題和非選擇題兩部分,共4頁. 滿分150分.考試用時120分鐘.所有的試題的答案都填寫在答題卡的相應位置.
參考公式:
錐體積公式:(S為底面面積,h為高)
導數公式:
如果事件相互獨立,那么
如果事件在一次試驗中發(fā)生的概率是,那么次獨立重復試驗中恰好發(fā)生次的概率
即,則
一、選擇題:本大題共8小題,每小題5分,滿分40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
1.函數的定義域是
A. B.
C. D.
2.若復數是純虛數(i是虛數單位),則實數a的值為
A. 6 B.
3.如圖,平行四邊形對角線交于,為中點,則
A. B.
C. D.
4.數列1,11,111,1111,…,,…的前10項之和是
A. B. C. D.
5. 點滿足:,則點P到直線的最短距離是
A. B.
6. 已知,,則的值為
A. B.
C. D.
7.右邊流程圖中, 語句“S=S×n”將被執(zhí)行的次數是
A.4 B.5
C.6 D. 7
8.下列四種說法中,錯誤的個數是
①.命題“”的否定是“” ;
②.“命題為真”是“命題為真”的必要不充分條件;
③.“若”的逆命題為真;
④.若實數,則滿足:的概率為;
A.0 B.1 C.2 D.3
二、填空題:本大題共7小題,每小題5分,滿分30分.其中13~15題是選做題,考生只能選做兩題,三題全答的,只計算前兩題得分.
9. 以為頂點且離心率為的雙曲線的標準方程是____________.
10.已知隨機變量X~,若,則 ;
11.一個五面體的三視圖如下,正視圖與側視圖是等腰直角三角形,俯視圖為直角梯形,部分邊長如圖所示,則此五面體的體積為___________.
12. 甲、乙等五名醫(yī)生被分配到四川災區(qū)四個不同的崗位服務,每個崗位至少一名醫(yī)生,則甲、乙兩人各自獨立承擔一個崗位工作的分法共有________種(用數字做答).
13. (坐標系與參數方程選做題)
在極坐標系中,點A和點B的極坐標分別為和,O為極點,則三角形OAB的面積=_____.
14. (幾何證明選講選做題)
如下圖,AB是圓O的直徑,直線CE和圓O相切于點C,于D,若AD=1,,則圓O的面積是 .
15. (不等式選講選做題)
已知實數滿足:,則的取值范圍為____________.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16.(本小題滿分12分)
已知甲、乙兩名乒乓球運動員進行比賽,根據二人以往比賽資料統(tǒng)計,在一局比賽中,甲獲勝的概率為,乙獲勝的概率為,且各局比賽互不影響,F在甲、乙二人準備進行三局比賽.
(1)求在三局比賽中甲勝前兩局、乙勝第三局的概率;
(2)用ξ表示三局比賽中甲獲勝的局數,求ξ的分布列及數學期望.
17.(本小題滿分12分)
已知函數的最大值為3,的圖像的相鄰兩對稱軸間的距離為2,在y軸上的截距為2.
(1)求函數的解析式;
(2)求的單調遞增區(qū)間.
18.(本小題滿分14分)
如圖, 在直三棱柱ABC-A1B
AA1=4,點D是AB的中點.
(1)求證:AC⊥BC1;
(2)求多面體的體積;
(3)求二面角的平面角的正切值.
19.(本小題滿分14分)
已知橢圓,是其左右焦點.
(1)若為橢圓上動點,求的最小值;
(2)若分別是橢圓長軸的左右端點,為橢圓上動點,設直線斜率為,且,求直線斜率的取值范圍.
20.(本小題滿分14分)
已知正數數列滿足:,其中為數列的前項和.
(1)求數列的通項;
(2)求的整數部分.
21.(本小題滿分14分)
設函數.
(1)求的極值點;
(2)對任意的,以記在上的最小值,求的最小值.
絕密★啟用前 試卷類型:A
珠海市2009年高三年級第二次調研考試
高三理科數學評分標準
2009.5
一、選擇題:(共8小題,每小題5分,滿分40分)
1.D 2.C 3.A 4.A 5.C 6.D 7.B 8.C
二、填空題:(共6小題,每小題5分,滿分30分)
9. 10. 11. 2 12. 72
13.(坐標系與參數方程選做題) 14. (幾何證明選講選做題) 4π
15. (不等式選講選做題)
三、解答題:
16.(本小題滿分12分)
解:(1)設事件A表示“在三局比賽中甲勝前兩局、乙勝第三局”,則: ……………………………….……4分
(2)法1:由題意知:的可能取值為0,1,2,3。……………………………5分
…..…..9分
ξ
0
1
2
3
p
則ξ的分布列為:
…………………10分
則Eξ=………………………………12分
法2:由題意知:,則:,
ξ
0
1
2
3
p
則ξ的分布列為:
…………………10分
則Eξ=………………………………………………….………………12分
17.(本小題滿分12分)
解:(Ⅰ)…………………………………………1分
依題意 …………………………………………2分
又
…………………………………………4分
…………………………………………5分
令 x=0,得 ………………………7分
所以, 函數的解析式為 ……………………………8分
(還有其它的正確形式,如:等)
(Ⅱ)當,時單增 ……10分
即, …………………………………………11分
∴的增區(qū)間是 ………………………………………12分
(注意其它正確形式,如:區(qū)間左右兩端取開、閉,等)
18.(本小題滿分14分)
(1)證明:直三棱柱ABC-A1B
BC=4,AB=5,
∴ AC⊥BC,
…………………………………………………………………2分
又 AC⊥C,
∴ AC⊥平面BCC1; ………………………………………………………………4分
∴ AC⊥BC1 ………………………………………………………………5分
(2)-=20…8分
(3)解法一:取中點,過作于,連接。 …………………………………………9分
是中點,
∴
∴平面,
∴
∴
∴平面…………………………………………………10分
∴
∴是二面角的平面角…………………………………………12分
AC=3,BC=4,AA1=4,
∴,
∴ …………………………………………13分
∴二面角的正切值為…………………………………………14分
解法二:以分別為軸建立如圖所示空間直角坐標系,…………………………………………9分
AC=3,BC=4,AA1=4,
∴,,,
∴,
平面的法向量, …………………………………………10分
設平面的法向量,
則,的夾角的補角的大小就是二面角的大小……………………11分
則由解得……………………………………………12分
,則 ……………13分
∴二面角的正切值為 …………………………………………14分
19.(本小題滿分14分)
解:(1)設橢圓的半長軸長、半短軸長、半焦距分別為a,b,c,則有
,
由橢圓定義,有 ………1分
=……………………………2分
= ……………………3分
≥ …………………………………………5分
== ……………………………………………6分
∴的最小值為。(當且僅當時,即取橢圓上下頂點時,取得最小值 )………………………………………7分
(2)設的斜率為,
則, …………………………………………8分
…………………………………………9分
∴= 及 …………………………………………10分
則== 又…………………………………………12分
∴ …………………………………………13分
故斜率的取值范圍為() …………………………………………14分
20.(本小題滿分14分)
解:(1),……………………1分
即,
即,, …………………………………………2分
∴為等差數列, …………………………………………3分
又, …………………………………………4分
∴, …………………………………………5分
∴ …………………………………………7分
(2) …………………………………………8分
當時,
…………………………………………11分
的整數部分為18。 …………………………………………14分
21.(本小題滿分14分)
解:(1) ………(1分)
由解得: ………(2分)
當或時, ………(3分)
當時, ………(4分)
所以,有兩個極值點:
是極大值點,; ………(5分)
是極小值點,。 ………(6分)
(2) 過點做直線,與的圖象的另一個交點為A,則,即 ………(8分)
已知有解,則
解得 ………(10分)
當時,; ………(11分)
當時,,,
其中當時,;………(12分)
當時,!13分)
所以,對任意的,的最小值為(其中當時,) ………(14分)
(以上答案和評分標準僅供參考,其它答案,請參照給分)
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com