2008年福州市高三第二次質(zhì)檢

數(shù)學(xué)(理科)試卷

 

(考試時間:120分鐘;滿分150分)

 

注意事項:

1.本科考試分試題卷和答題卷,考生須在答題卷上作答,答題前,請在答題卷的密封線內(nèi)填寫學(xué)校、班級、學(xué)號、姓名;

2.本試卷分為第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,全卷滿分150分,考試時間120分鐘.

參考公式:

如果事件A、B互斥,那么P(A+B)=P(A)+P(B).

如果事件A、B相互獨立,那么P(A?B)=P(A)?P(B).

如果事件A在一次試驗中發(fā)生的概率是,那么它在n次獨立重復(fù)試驗中恰好發(fā)生k次的概率.

球的表面積公式,其中R表示球的半徑.

球的表體積公式,其中R表示球的半徑.

第Ⅰ卷 (選擇題  共60分)

一.選擇題(本大題共12小題,每小題5分,共60分. 在每小題所給的四個答案中有且只有一個答案是正確的)

1.若為實數(shù),則復(fù)數(shù)有可能等于( 。.

A.     B.       C.        D.

2.已知集合,,則(    ).

A.            B.            C.             D.

3.  函數(shù)的反函數(shù)是( 。.

A.                B.

C.                D.

4. 直角坐標(biāo)系中,,若三角形是直角三角形,則的可能值的個數(shù)是( 。

    A.1             B.2             C.3             D.4

 

5. 不等式的解集為,則函數(shù)的圖象大致為(   )

 

 

 

          A                                 B                         C                              D

6. 已知首項為正數(shù)的等差數(shù)列滿足: ,,則使其前

n項和成立的最大自然數(shù)n是( 。.

    A. 4017        B.4014       C. 4016          D.4018

7. 已知a,b,c為三條不同的直線,且a平面Mb平面NMN =c .①若a不垂直于c,則a與b一定不垂直;②若a//b,則必有a//c;③若a⊥b,a⊥c則必有MN以上的命題中正確的是(    )

    A.①             B.②             C.③             D.②③

8. 如果把圓C:x2+y2=1沿向量a=(1,m)平移到,且與直線3x-4y=0相切,則m的值為(    )

A.2或-      B.2或        C.-2或        D.-2或-

9. 某電視臺連續(xù)播放5個廣告,其中有3個不同的商業(yè)廣告和2個不同的奧運宣傳廣告,要求最后播放的必須是奧運宣傳廣告,且2個奧運宣傳廣告不能連續(xù)播放,則不同的播放方式有           

A.120種        B.48種           C.36種           D.18種

10.已知函數(shù)在區(qū)間上至少取得2次最大值,則正整數(shù)的最小值是(    )

82615980

11. 已知函數(shù),在區(qū)間上有最小值,則函數(shù)在區(qū)間上一定(    )

A.有最小值        B.有最大值       C.是減函數(shù)       D.是增函數(shù)

12. 在平面直角坐標(biāo)系中,,映射平面上的點對應(yīng)到另一個平面直角坐標(biāo)系上的點,則當(dāng)點沿著折線運動時,在映射的作用下,動點的軌跡是(    )

           

A.                 B.                  C.               D.

 

第Ⅱ卷 (非選擇題 共90分)

二.填空題(本大題共4小題,每小題4分,共16分,將答案填在題后的橫線上.)

13. 在平面直角坐標(biāo)系中,不等式組表示的平面區(qū)域面積是      

試題詳情

14. 已知的展開式中,二項式系數(shù)和為,各項系數(shù)和為,則        

試題詳情

15. 一個四面體的所有棱長都為,四個頂點在同一球面上,則此球的表面積為    

試題詳情

16. 已知定義在上的函數(shù)滿足,且當(dāng)時,,則的值為        .                      

 

 

試題詳情

三、解答題(本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算過程)

17.(本小題滿分12分)

試題詳情

已知函數(shù)=2acos2x+bsinxcosx,且f(0)=,f()=.

試題詳情

(Ⅰ)求的解析式;

試題詳情

(Ⅱ)求的單調(diào)遞增區(qū)間;

試題詳情

(Ⅲ)函數(shù)的圖象經(jīng)過怎樣的平移可使其對應(yīng)的函數(shù)成為奇函數(shù)?

 

試題詳情

18.(本小題滿分12分)

試題詳情

三個人進(jìn)行某項射擊活動,在一次射擊中甲、乙、丙三人射中目標(biāo)的概率分別為、、.

(Ⅰ)一次射擊后,三人都射中目標(biāo)的概率是多少?

試題詳情

(Ⅱ)用隨機變量表示三個人在一次射擊后射中目標(biāo)的次數(shù)與沒有射中目標(biāo)的次數(shù)之差的絕對值,求隨機變量的分布列及數(shù)學(xué)期望.

 

 

 

試題詳情

試題詳情

19.(本小題滿分12分)

如圖,直三棱柱A1B1C1―ABC中,C1C=CB=CA=2,AC⊥CB. D、E分別為棱C1C、B1C1的中點.

試題詳情

    (Ⅰ)求與平面A1C1CA所成角的大。

    (Ⅱ)求二面角B―A1D―A的大。

    (Ⅲ)試在線段AC上確定一點F,使得EF⊥平面A1BD.

 

 

試題詳情

20.(本小題滿分12分)

試題詳情

數(shù)列的前項和為,滿足關(guān)系: .

試題詳情

(Ⅰ)求的通項公式:

試題詳情

(Ⅱ)設(shè)計算.

 

試題詳情

21.(本小題滿分12分)

試題詳情

已知點A(-2,0),B(2,0),動點P滿足:∠APB=2,且|PA||PB|sin2θ=2,

(Ⅰ)求證:動點P的軌跡Q是雙曲線;

試題詳情

(Ⅱ)過點B的直線與軌跡Q交于兩點M,N.試問軸上是否存在定點C,使為常數(shù),若存在,求出點C的坐標(biāo);若不存在,說明理由.

 

試題詳情

22.(本小題滿分14分)

試題詳情

已知函數(shù)

試題詳情

   (Ⅰ)求函數(shù)的單調(diào)區(qū)間和最小值;

試題詳情

   (Ⅱ)當(dāng)(其中e=2.718 28…是自然對數(shù)的底數(shù));

試題詳情

   (Ⅲ)若

 

2008年福州市高三第二輪質(zhì)檢

試題詳情

 

一.選擇題   1-5   6-10   11-12     BBDBC  CBACC  DA

 

二.填空題   13. 1 ;   14. 2;    15. ;   16.  -1

 

三、解答題

17.解:(Ⅰ)由f(0)=,得2a-=,∴2a=,則a=.

由f()=,得+-=,∴b=1,…………2分

∴f(x) =cos2x+sinxcosx -=cos2x+sin2x=sin(2x+).…………4分

(Ⅱ)由f(x)=sin(2x+).

又由+2kπ≤2x++2kπ,得+kπ≤x≤+kπ,

∴f(x)的單調(diào)遞增區(qū)間是[+kπ,+kπ](k∈Z).?…………8分

(Ⅲ)∵f(x)=sin2(x+),

∴函數(shù)f(x)的圖象右移后對應(yīng)的函數(shù)可成為奇函數(shù).…………12分

 

18.解:(I)一次射擊后,三人射中目標(biāo)分別記為事件A1,A2,A3

由題意知A1,A2,A3互相獨立,且,…………2分

.…………4分

∴一次射擊后,三人都射中目標(biāo)的概率是.…………5分

(Ⅱ)證明:一次射擊后,射中目標(biāo)的次數(shù)可能取值為0、1、2、3,相應(yīng)的沒有射中目標(biāo)的的次數(shù)可能取值為3、2、1、0,所以可能取值為1、3, …………6分

)+

 ………8分

,………10分

.………12分

19.解:(Ⅰ)連接A1C.∵A1B1C1-ABC為直三棱柱,∴CC1⊥底面ABC,∴CC1⊥BC.

    ∵AC⊥CB,∴BC⊥平面A1C1CA. ……………1分

    ∴與平面A1C1CA所成角,

.

與平面A1C1CA所成角為.…………3分

(Ⅱ)分別延長AC,A1D交于G. 過C作CM⊥A1G 于M,連結(jié)BM,

    ∵BC⊥平面ACC­1A1,∴CM為BM在平面A1C1CA內(nèi)的射影,

    ∴BM⊥A1G,∴∠CMB為二面角B―A1D―A的平面角,………………………5分

    平面A1C1CA中,C1C=CA=2,D為C1C的中點,

    ∴CG=2,DC=1 在直角三角形CDG中,,.……7分

    即二面角B―A1D―A的大小為.……………………8分

(Ⅲ)取線段AC的中點F,則EF⊥平面A1BD.……………9分

證明如下:

∵A1B1C1―ABC為直三棱柱,∴B1C1//BC,

∵由(Ⅰ)BC⊥平面A1C1CA,∴B1C1⊥平面A1C1CA,……………10分

∵EF在平面A1C1CA內(nèi)的射影為C1F,當(dāng)F為AC的中點時,

C1F⊥A1D,∴EF⊥A1D.

同理可證EF⊥BD,∴EF⊥平面A1BD.……………………12分

文本框:  解法二:

(Ⅰ)同解法一……………………3分

(Ⅱ)∵A1B1C1―ABC為直三棱柱,C1C=CB=CA=2,

AC⊥CB,D、E分別為C1C、B1C1的中點.

建立如圖所示的坐標(biāo)系得:

C(0,0,0),B(2,0,0),A(0,2,0),

C1(0,0,2), B1(2,0,2), A­1(0,2,2),

D(0,0,1), E(1,0,2).………………6分

,設(shè)平面A1BD的法向量為,

  .…………6分

平面ACC1A1­的法向量為=(1,0,0),.………7分

即二面角B―A1D―A的大小為.…………………8分

(Ⅲ)F為AC上的點,故可設(shè)其坐標(biāo)為(0,,0),∴.

由(Ⅱ)知是平面A1BD的一個法向量,

欲使EF⊥平面A1BD,當(dāng)且僅當(dāng)//.……10分

,∴當(dāng)F為AC的中點時,EF⊥平面A1BD.…………………12分

 

20.解:(Ⅰ) 據(jù)題意: ,

.

   兩式相減,有:,…………3分

 .…………4分

又由=解得. …………5分

是以為首項,為公比的等比數(shù)列,∴.…………6分

 (Ⅱ)

 ………8分

…………12分

 

21.解: (Ⅰ)依題意,由余弦定理得:

, ……2分

  

.

,即.  …………4分

(當(dāng)動點與兩定點共線時也符合上述結(jié)論)

動點的軌跡Q是以為焦點,實軸長為的雙曲線.其方程為.………6分

(Ⅱ)假設(shè)存在定點,使為常數(shù).

(1)當(dāng)直線不與軸垂直時,

設(shè)直線的方程為,代入整理得:

.…………7分

由題意知,

設(shè),,則,.…………8分

于是,   …………9分

.…………10分

要使是與無關(guān)的常數(shù),當(dāng)且僅當(dāng),此時.…11分

(2)當(dāng)直線軸垂直時,可得點,,

當(dāng)時,.   

故在軸上存在定點,使為常數(shù).…………12分

 

22.解:(Ⅰ)………1分

       

        同理,令

        ∴f(x)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.……………………3分

        由此可知…………………………………………4分

   (Ⅱ)由(I)可知當(dāng)時,有,

        即.

    .……………………………………………………………………7分

  (Ⅲ) 設(shè)函數(shù)…………………………………10分

       

        ∴函數(shù))上單調(diào)遞增,在上單調(diào)遞減.

        ∴的最小值為,即總有

        而

       

        即

        令

       

        ……………………………………14分

 


同步練習(xí)冊答案