考試內(nèi)容:
集合.子集、交集、并集、補(bǔ)集.
邏輯聯(lián)結(jié)詞。四種命題。充要條件。
映射.函數(shù)(函數(shù)的記號(hào)、定義域、值域).
函數(shù)的單調(diào)性.(函數(shù)的奇偶性)
反函數(shù).互為反函數(shù)的函數(shù)圖象間的關(guān)系.
指數(shù)概念的擴(kuò)充。有理指數(shù)冪的運(yùn)算性質(zhì)。指數(shù)函數(shù)。對(duì)數(shù)。對(duì)數(shù)的運(yùn)算性質(zhì)。對(duì)數(shù)函數(shù)。函數(shù)的應(yīng)用舉例。實(shí)習(xí)作業(yè)。
二次函數(shù).
考試要求:
(1)理解集合、子集、交集、并集、補(bǔ)集的概念.了解空集和全集的意義,了解屬于、包含、相等關(guān)系的意義,能掌握有關(guān)的術(shù)語(yǔ)和符號(hào),能正確地表示一些較簡(jiǎn)單的集合.
(2)理解邏輯邏輯聯(lián)結(jié)詞“或”、“且”、“非”的含義;理解四種命題及其相互關(guān)系;掌握充要條件的意義。
(3)了解映射的概念,在此基礎(chǔ)上理解函數(shù)及其有關(guān)的概念掌握互為反函數(shù)的函數(shù)圖象間的關(guān)系.
(3)理解函數(shù)的單調(diào)性的概念,并能判斷一些簡(jiǎn)單函數(shù)的單調(diào)性的方法。
(4)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系,會(huì)求一些簡(jiǎn)單的反函數(shù)。
(5)理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì);掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì)。
(6)理解分?jǐn)?shù)指數(shù)的概念,掌握有理指數(shù)冪的運(yùn)算性質(zhì);掌握指數(shù)函數(shù)的概念、圖象和性質(zhì)。
(7)能夠運(yùn)用函數(shù)的性質(zhì)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡(jiǎn)單的實(shí)際問(wèn)題。
(8)實(shí)習(xí)作業(yè)以函數(shù)應(yīng)用為內(nèi)容,培養(yǎng)學(xué)生應(yīng)用函數(shù)知識(shí)解決實(shí)際問(wèn)題的能力。
1985年――2002年高考試題回顧
1.在下面給出的函數(shù)中,哪一個(gè)既是區(qū)間(0,)上的增函數(shù),又是以π為周期的偶函數(shù)(85(3)3分)
A.y=x2 B.y=|sinx| C.y=cos2x D.y=esin2x
2.函數(shù)y=(0.2)-x+1的反函數(shù)是(86(2)3分)
A.y=log5x+1 B.y=logx5+1 C.y=log5(x-1) D.y=log5x-1
3.在下列各圖中,y=ax2+bx與y=ax+b的圖象只可能是(86(9)3分)
A. B. C. D.
4.設(shè)S,T是兩個(gè)非空集合,且SS,令X=S∩T,那么S∪X=(87(1)3分)
A.X B.T C.Φ D.S
5.在區(qū)間(-∞,0)上為增函數(shù)的是(87(5)3分)
A.y=-log0.5(-x) B.y= C.y=-(x+1)2 D.y=1+x2
6.集合{1,2,3}的子集總共有(88(3)3分)
A.7個(gè) B.8個(gè) C.6個(gè) D.5個(gè)
7.如果全集I={a,b,c,d,e},M={a,c,d},N={b,d,e},則=(89(1)3分)
A.φ B.grypyha C.{a,c} D.{b,e}
8.與函數(shù)y=x有相同圖象的一個(gè)函數(shù)是(89(2)3分)
A.y= B.y= C.y=a(a>0且a≠1) D.y=log(a>0且a≠1)
9.已知f(x)=8+2x-x2,如果g(x)=f(2-x2),那么g(x)(89(11)3分)
A.在區(qū)間(-1,0)上是減函數(shù) B.在區(qū)間(0,1)上是減函數(shù)
C.在區(qū)間(-2,0)上是增函數(shù) D.在區(qū)間(0,2)上是增函數(shù)
10.設(shè)全集I={(x,y)|x,y∈R},M={(x,y)|=1},N={(x,y)|y≠x+1},則=(90(9)3分)
A.φ B.{(2,3)} C.(2,3) D.{(x,y)|y=x+1}
11.如果實(shí)數(shù)x,y滿足等式(x-2)2+y2=3,那么的最大值是(90(10)3分)
A. B. C. D.
12.函數(shù)f(x)和g(x)的定義域?yàn)镽,“f(x)和g(x)均為奇函數(shù)”是“f(x)與g(x)的積為偶函數(shù)”的(90上海)
A.必要條件但非充分條件 B.充分條件但非必要條件
C.充分必要條件 D.非充分條件也非必要條件
13.如果loga2>logb2>0,那么(90廣東)
A.1<a<b B.1<b<a C.0<a<b<1 D.0<b<a<1
14.如果奇函數(shù)f(x)在區(qū)間[3,7]上是增函數(shù)且最小值為5,那么f(x)在區(qū)間[-7,-3]上是(91(13)3分)
A.增函數(shù)且最小值為-5 B.增函數(shù)且最大值為-5
C.減函數(shù)且最小值為-5 D.減函數(shù)且最大值為-5
15.設(shè)全集為R,f(x)=sinx,g(x)=cosx,M={x|f(x)≠0},N={x|g(x)≠0},那么集合{x|f(x)g(x)=0}等于
A. B.∪N C.∪N D.
16.等于(92(1)3分)
A. B.1 C. D.2
17.函數(shù)y=的反函數(shù)(92(16)3分)
A.是奇函數(shù),它在(0,+∞)上是減函數(shù) B.是偶函數(shù),它在(0,+∞)上是減函數(shù)
C.是奇函數(shù),它在(0,+∞)上是增函數(shù) D.是偶函數(shù),它在(0,+∞)上是增函數(shù)
18.如果函數(shù)f(x)=x2+bx+c對(duì)任意實(shí)數(shù)t都有f(2+t)=f(2-t),那么(92(17)3分)
A.f(2)<f(1)<f(4) B.f(1)<f(2)<f(4)
C.f(2)<f(4)<f(1) D.f(4)<f(2)<f(1)
19.F(x)=[1+]f(x),(x≠0)是偶函數(shù),且f(x)不恒等于0,則f(x)(93(8)3分)
A.是奇函數(shù) B.是偶函數(shù)
C.可能是奇函數(shù)也可能是偶函數(shù) D.不是奇函數(shù)也不是偶函數(shù)
20.設(shè)a,b,c都是正數(shù),且3a=4b=6c,那么(93(16)3分)
A. B. C. D.
21.設(shè)全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},則=(94(1)4分)
A.{0} B.{0,1} C.{0,1,4} D.(0,1,2,3,4}
22.設(shè)函數(shù)f(x)=1-(-1≤x≤0),則函數(shù)y=f-1(x)的圖象是(94(12)5分)
A.
y B. y 1 C. y D.
y 1
1
x
1
O
x
-1
-1
-1 O x O
1 x
23.定義在R上的任意函數(shù)f(x)都可以表示成一個(gè)奇函數(shù)g(x)與一個(gè)偶函數(shù)h(x)之和,如果f(x)=lg(10x+1),x∈R,那么(94(15)5分)
A.g(x)=x,h(x)=lg(10x+10-x+1) B.g(x)=,h(x)=
C.g(x)=,h(x)=lg(10x+1)- D.g(x)=-,h(x)=
24.當(dāng)a>1時(shí),函數(shù)y=logax和y=(1-a)x的圖像只可能是(94上海)
A. y B. y C. y D. y
0 1 x 0 1 x 0 1 x 0 1 x
25.如果0<a<1,那么下列不等式中正確的是(94上海)
A.(1-a)>(1-a) B.log(1-a)(1+a)>0 C.(1-a)3>(1+a)2 D.(1-a)1+a>1
26.已知I為全集,集合M,NÌI,若M∩N=N,則(95(1)4分)
A. B.ÍN C. D.ÊN
27.函數(shù)y=-的圖象是(95(2)4分)
A. y B.
y C. y D. y
O 1 x
-1 O x O 1 x -1 O x
28.已知y=loga(2-ax)在[0,1]上是x的減函數(shù),則a的取值范圍是(95(11)5分)
A.(0,1) B.(1,2) C.(0,2) D.[2,+∞)
29.已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},則(96(1)4分)
A.I=A∪B B.I=∪B C.I=A∪ D.I=
30.當(dāng)a>1時(shí),同一直角坐標(biāo)系中,函數(shù)y=a-x,y=logax的圖象是(96(2)4分)
A. y B. y C.
y D. y
1
1
1
1
O 1 x O 1 x O 1 x O 1 x
31.設(shè)f(x)是(-∞,∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1,f(x)=x,則f(7.5)=( ) (96(15)5分)
A.0.5 B.-0.5 C.1.5 D.-1.5
32.如果loga3>logb3>0,那么a、b間的關(guān)系為(96上海)
A.0<a<b<1 B.1<a<b C.0<b<a<1 D.1<b<a
33.在下列圖像中,二次函數(shù)y=ax2+bx與指數(shù)函數(shù)y=的圖像只可能是(96上海)
A. B. C. D.
34.設(shè)集合M={x|0≤x<2},集合N={x|x2-2x-3<0},集合M∩N=(97(1)4分)
A.{x|0≤x<1} B.{x|0≤x<2} C.{x|0≤x≤1} D.{x|0≤x≤2}
35.將y=2x的圖象
A.先向左平行移動(dòng)1個(gè)單位 B.先向右平行移動(dòng)1個(gè)單位
C.先向上平行移動(dòng)1個(gè)單位 D.先向下平行移動(dòng)1個(gè)單位
再作關(guān)于直線y=x對(duì)稱的圖象,可得到函數(shù)y=log2(x+1)的圖象.(97(7)4分)
36.定義在區(qū)間(-∞,+∞)的奇函數(shù)f(x)為增函數(shù);偶函數(shù)g(x)在區(qū)間[0,+∞)的圖象與f(x)重合.設(shè)a>b>0,給出下列不等式:
①f(b)-f(-a)>g(a)-g(-b) ②f(b)-f(-a)<g(a)-g(-b)
③f(a)-f(-b)>g(b)-g(-a) ④f(a)-f(-b)<g(b)-g(-a)
其中成立的是(97(13)5分)
A.①與④ B.②與③ C.①與③ D.②與④
37.函數(shù)y=a|x|(a>1)的圖像是(98(2)4分)
A. y B. y C. y D. y
1
1
1
o
x
o
x
o x
o x
38.函數(shù)f(x)=(x≠0)的反函數(shù)f-1(x)=(98(5)4分)
A.x(x≠0) B.(x≠0) C.-x(x≠0) D.-(x≠0)
39.
|