安徽省宿州二中2008―2009學(xué)年度高三模擬考試(3)
數(shù)學(xué)試題(理)
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分. 共150分,測(cè)試時(shí)間120分鐘.
第Ⅰ卷(選擇題 共60分)
注意事項(xiàng):
1.答第1卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考試科目寫在答題卡上.
2.每小題選出答案后,用HB或者2B鉛筆把答題卡上的對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).不能答在試題卷上.
一、選擇題:本大題共12個(gè)小題. 每小題5分,共60分. 在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1、設(shè)函數(shù)的定義域?yàn)榧螹,集合N=,則
A. B.N C. D.M
2、已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的倍,則橢圓的離心率等于
A. B. C. D.
3、如果執(zhí)行的程序框圖(右圖所示),那么輸出的
A.2450 B.2500 C.2550 D.2652
4、若曲線的一條切線與直線
垂直,則切線的方程為、
A、 B、
C、 D、
5、方程有實(shí)根的概率為
A、 B、 C、 D、
6、已知是平面,是直線,則下列命題中不正確的是、
A、若∥,則 B、若∥,則∥
C、若,則∥ D、若,則
7、一張正方形的紙片,剪去兩個(gè)一樣的小矩形得到一個(gè)“”圖案,
如圖所示,設(shè)小矩形的長(zhǎng)、寬分別為、,剪去部分的面積為,
若,記,則的圖象是
8、將函數(shù)的圖象先向左平移,然后將所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的倍(縱坐標(biāo)不變),則所得到的圖象對(duì)應(yīng)的函數(shù)解析式為
A. B. C. D.
第2卷(非選擇題,共110分)
二、填空題:本大題共7小題,其中13~15題是選做題,考生只能選做兩題,三題全答的,只計(jì)算前兩題得分.每小題5分,滿分30分.
9、已知向量,,若,則實(shí)數(shù)的值等于 .
10、已知,則= .
11、是虛數(shù)單位,則 .
12、函數(shù)由下表定義:
l
l
l
l
l
l
l
l
l
l
l
l
若,,,則 .
13、(坐標(biāo)系與參數(shù)方程選做題)曲線:上的點(diǎn)到曲線:上的點(diǎn)的最短距離為 .
14、(不等式選講選做題)已知實(shí)數(shù)滿足,則的最大值為 .
15、(幾何證明選講選做題)如圖,平行四邊形中,
,若的面積等于1cm,
則的面積等于 cm.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過(guò)程和演算步驟.
16、(本小題滿分12分)
設(shè)正項(xiàng)等比數(shù)列的前項(xiàng)和為, 已知,.
(1)求首項(xiàng)和公比的值;
(2)若,求的值.
17、(本小題滿分12分)
設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),的最大值為2,求的值,并求出的對(duì)稱軸方程.
18、(本小題滿分14分)
一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.
(1)采取放回抽樣方式,從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個(gè)球,求摸得白球的個(gè)數(shù)的期望和方差.
(方差:)
19、(本小題滿分14分)
如圖,已知四棱錐的底面是菱形;平面,,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)求二面角的正切值.
20、(本小題滿分14分)
給定圓P:及拋物線S:,過(guò)圓心作直線,此直線與上述兩曲線的四個(gè)交點(diǎn),自上而下順次記為,如果線段的長(zhǎng)按此順序構(gòu)成一個(gè)等差數(shù)列,求直線的方程.
21、(本小題滿分14分)
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②
函數(shù)的導(dǎo)數(shù)滿足”.
(1)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;
(2)集合M中的元素具有下面的性質(zhì):若的定義域?yàn)镈,則對(duì)于任意[m,n]D,都存在[m,n],使得等式成立”,試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;
(3)設(shè)是方程的實(shí)數(shù)根,求證:對(duì)于定義域中任意的,當(dāng),且時(shí),.
一、選擇題:
l 題號(hào)
l
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
l
1、解析:,N=,
即.答案:.
2、解析:由題意得,
又.
答案:.
3、解析:程序的運(yùn)行結(jié)果是.答案:.
4、解析:與直線垂直的切線的斜率必為4,而,所以,切點(diǎn)為.切線為,即,答案:.
5、解析:由一元二次方程有實(shí)根的條件,而,由幾何概率得有實(shí)根的概率為.答案:.
6、解析:如果兩條平行直線中的一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面,所以正確;如果兩個(gè)平面與同一條直線垂直,則這兩個(gè)平面平行,所以正確;
如果一個(gè)平面經(jīng)過(guò)了另一個(gè)平面的一條垂線,則這兩個(gè)平面平行,所以也正確;
只有選項(xiàng)錯(cuò)誤.答案:.
7、解析:由題意,得,答案:.
8、解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉?lái)的倍.答案:.
二、填空題:
l 題號(hào)
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
9、解析:若,則,解得.
10、解析:由題意.
11、解析:
12、解析:令,則,令,則,
令,則,令,則,
令,則,令,則,
…,所以.
13、解析::;則圓心坐標(biāo)為.
:由點(diǎn)到直線的距離公式得圓心到直線的距離為,所以要求的最短距離為.
14、解析:由柯西不等式,答案:.
15、解析:顯然與為相似三角形,又,所以的面積等于9cm.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過(guò)程和演算步驟.
16、解: (1), ……………………… 2分
∴,………………………………………………… 4分
解得.………………………………………………………………… 6分
(2)由,得:, ……………………… 8分
∴ ………………………………… 10分
∴.…………………………………………………………… 12分
17、解:(1)… 2分
則的最小正周期, …………………………………4分
且當(dāng)時(shí)單調(diào)遞增.
即為的單調(diào)遞增區(qū)間(寫成開(kāi)區(qū)間不扣分).……6分
(2)當(dāng)時(shí),當(dāng),即時(shí).
所以. …………………………9分
為的對(duì)稱軸. …………………12分
18、解:
(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,
記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分
∵“兩球恰好顏色不同”共種可能,…………………………5分
∴. ……………………………………………………7分
解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn), …………………………2分
∵每次摸出一球得白球的概率為.………………………………5分
∴“有放回摸兩次,顏色不同”的概率為. …………………7分
(2)設(shè)摸得白球的個(gè)數(shù)為,依題意得:
,,.
… 10分
∴,……………………………………12分
.……………………14分
19、(1)證明: 連結(jié),與交于點(diǎn),連結(jié).………………………1分
是菱形, ∴是的中點(diǎn). ………………………………………2分
點(diǎn)為的中點(diǎn), ∴. …………………………………3分
平面平面, ∴平面. ……………… 6分
(2)解法一:
平面,平面,∴ .
,∴. …………………………… 7分
是菱形, ∴.
,
∴平面. …………………………………………………………8分
作,垂足為,連接,則,
所以為二面角的平面角. ………………………………… 10分
,∴,.
在Rt△中,=,…………………………… 12分
∴.…………………………… 13分
∴二面角的正切值是. ………………………… 14分
解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,令,……………2分
則,,.
∴. ……………4分
設(shè)平面的一個(gè)法向量為,
由,得,
令,則,∴. …………………7分
平面,平面,
∴. ………………………………… 8分
,∴.
是菱形,∴.
,∴平面.…………………………… 9分
∴是平面的一個(gè)法向量,.………………… 10分
∴,
∴, …………………… 12分
∴.…………………………………… 13分
∴二面角的正切值是. ……………………… 14分
20、解:圓的方程為,則其直徑長(zhǎng),圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè),
有, ………………………………2分
則. ……………………4分
故 …6分
, ………… 7分
因此. ………………………………… 8分
據(jù)等差,, …………… 10分
所以,即,,…………… 12分
即:方程為或. …………………14分
21、解:
(1)因?yàn)?sub>, …………………………2分
所以,滿足條件. …………………3分
又因?yàn)楫?dāng)時(shí),,所以方程有實(shí)數(shù)根.
所以函數(shù)是集合M中的元素. …………………………4分
(2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com