1. 凸四邊形ABCD,對交線AC,BD互相垂直,對邊AB,DC不平行,AB和DC的垂直平分線相交于
P點(diǎn),P在ABCD的內(nèi)部。

求證ABCD是圓內(nèi)接四邊形當(dāng)且僅當(dāng)三角形ABP、CDP的面積相等。

2. 在一次競賽中有a個(gè)參賽者和b個(gè)裁判,b≥3是一個(gè)奇數(shù)。每個(gè)裁判可以給參賽者判“合格”或者
“不合格”,假設(shè)任何兩個(gè)裁判對至多k個(gè)參賽者的判決相同,
求證:k/a  ≥  (b-1)/2b.

3. 對任何正整數(shù)n,用d(n)表示n的正因數(shù)(包括1,n)的個(gè)數(shù)。
試求出所有正整數(shù)k使存在n滿足 d(n2)=kd(n).

4. 試找出所有的正整數(shù)對(a,b)使得ab2+b+7能整除a2b+a+b。

5. 設(shè)I是三角形 ABC的內(nèi)心,三角形 ABC的內(nèi)切圓在邊BC,CA,AB上的切點(diǎn)分別是K,L,M。
通過B點(diǎn)平行于MK的直線交LM,LK分別于R,S。

求證:三角形 RIS是銳交三角形。

6. 考慮所有從正整數(shù)到正整數(shù)的函數(shù)f使之對于所有的s、t滿足f(t2f(s))=sf(t)2。
試求出f(1998)的最小的可能值。

 


同步練習(xí)冊答案