江蘇省通州市2009屆高考回歸課本專項檢測
數(shù)學試題
(考試時間:120分鐘;滿分:160分)
一、填空題:(共14小題,每小題5分,共計70分.把答案填在答題紙指定的橫線上)
1. 若集合= .
2.在某項才藝競賽中,有9位評委,主辦單位規(guī)定計算參賽者比賽成績的規(guī)則如下:剔除評委中的一個最高分和一個最低分后,再計算其它7位評委的平均分作為此參賽者的比賽成績.現(xiàn)有一位參賽者所獲9位評委一個最高分為86分、一個最低分為45分,若未剔除最高分與最低分時9位評委的平均分為76分,則這位參賽者的比賽成績?yōu)?/p>
分.
3.復數(shù)滿足,則復數(shù)的實部與虛部之和為 .
4. 已知條件條件且是的充分不必要條件,則a的取值范圍是 .
5. 設是各項都是正數(shù)的等比數(shù)列的前項和,若
,則公比的取值范圍是 .
6. 若正三棱錐的主視圖與俯視圖如下(單位cm),則左視圖的面積為 .
7. 根據(jù)上面的框圖,該程序運行后輸出的結果為 .
8. 若是定義在R上的奇函數(shù),且當時,;當時,.則函數(shù)的零點有________個.
9. 函數(shù)的圖象向右平移個單位可得函數(shù)的圖象,若在上為增函數(shù),則的最大值為 .
10. 已知圓的方程為,是圓上的一個動點,若的垂直平分線總是被平面區(qū)域覆蓋,則實數(shù)的取值范圍是 .
11.己知雙曲線的方程為,直線的方程為,過雙曲線的右焦點的直線與雙曲線的右支相交于P、,以為直徑的圓與直線相交于、,記劣弧的長度為,則的值為 .
12. 在中,若,則的外接圓半徑.
將此結論拓展到空間,可得出的正確結論是:在四面體中,若兩
兩垂直,,則四面體的外接球半徑R= .
13. 設函數(shù),,若對于任意,總存在,使得成立.則正整數(shù)a的最小值為 .
14. 在正整數(shù)數(shù)列中,由1開始依次按如下規(guī)則將某些數(shù)染成紅色,先染 1,再染2個偶數(shù)2、4;再染4后面最鄰近的3個連續(xù)奇數(shù) 5、7、9;再染 9 后面最鄰近的4個連續(xù)偶數(shù) 10、12、14、16;再染此后最鄰近的5個連續(xù)奇數(shù)17、19、21、23、25. 按此規(guī)則一直染下去,得到一紅色子數(shù)列 1,2,4,5,7,9,12,14,16,17,…. 則在這個紅色子數(shù)列中,由1開始的第2009個數(shù)是 .
二、解答題:本大題共6小題,共計90分.解答應寫出文字說明、證明過程或演算步驟
15.(本小題14分)已知向量.
(1)若,求的值;
(2)記,在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足
(
16. (本小題14分)已知關于的一元二次函數(shù)
(1)設集合P={1,2, 3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機取一個數(shù)作為和,求函數(shù)在區(qū)間[上是增函數(shù)的概率;
(2)設點(,)是區(qū)域內(nèi)的隨機點,求函數(shù)上是增函數(shù)的概率.
17. (本小題15分)如圖,為圓的直徑,點、在圓上,且,矩形所在的平面和圓所在的平面互相垂直,且,.
(1)求證:平面;
(2)設的中點為,求證:平面;
(3)設平面將幾何體分成的兩個錐體的
體積分別為,,求.
18. (本小題15分)在平面直角坐標系中 ,已知以為圓心的圓與直線:,恒有公共點,且要求使圓的面積最小.
(1)寫出圓的方程;
(2)圓與軸相交于A、B兩點,圓內(nèi)動點P使、、成等比數(shù)列,求 的范圍;
(3)已知定點Q(,3),直線與圓交于M、N兩點,試判斷 是否有最大值,若存在求出最大值,并求出此時直線的方程,若不存在,給出理由.
19. (本小題16分)已知函數(shù),,其中.
(1)若是函數(shù)的極值點,求實數(shù)的值;
(2)若函數(shù)在(為自然對數(shù)的底數(shù))上存在零點,求實數(shù)的取值范圍.
20. (本小題16分)已知數(shù)列 和滿足
(1)當m=1時,求證:對于任意的實數(shù)一定不是等差數(shù)列;
(2)當時,試判斷是否為等比數(shù)列;
回歸課本專項檢測
數(shù)學附加題
(考試時間:30分鐘;滿分:40分)
21.【選做題】在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟.
A.【選修4-1:幾何證明選講】如圖,已知為圓O的直徑,直線與圓O相切于點,直線與弦垂直并相交于點,與弧相交于,連接,,.
(1)求證:;
(2)求.
B.【選修4-2:矩陣與變換】矩陣與變換:給定矩陣.
試求矩陣的特征值及對應的特征向量.
C.【選修4-4:坐標系與參數(shù)方程】已知直線的參數(shù)方程:(為參數(shù)),曲線C的極坐標方程:,求直線被曲線C截得的弦長.
D.【選修4-5:不等式選講】 設,求證:.
【必做題】第22題、第23題,每題10分,共計20分.請在答題卡指定區(qū)域內(nèi)作答,解答時應寫出文字說明、證明過程或演算步驟.
22. 一種填數(shù)字彩票2元一張,購買者在卡上依次填上0~9中的兩個數(shù)字(允許重復).中獎規(guī)則如下:如果購買者所填的兩個數(shù)字依次與開獎的兩個有序數(shù)字分別對應相等,則中一等獎10元;如果購買者所填的兩個數(shù)字中,只有第二個數(shù)字與開獎的第二個數(shù)字相等,則中二等獎2元;其他情況均無獎金.
(1)小明和小輝在沒有商量的情況下各買一張這種彩票,求他倆都中一等獎的概率;
(2)求購買一張這種彩票中獎的概率;
(3)設購買一張這種彩票的收益為隨機變量,求的數(shù)學期望.
23. 動點P在x軸與直線l:y=3之間的區(qū)域(含邊界)上運動,且點P到點F(0,1)和直線l的距離之和為4.
(1)求點P的軌跡C的方程;
(2)過點Q(0,-1)作曲線C的切線,求所作的切線與曲線C所圍成的區(qū)域的面積.
一、填空題:
1.;2. 79 ;3.1; 4. ; 5.;6. ; 7.16 ;8.7; 9.2; 10. ; 11. ; 12. ; 13. 2; 14. 3955.
特別說明:有消息說,今年數(shù)學的填空題的壓軸題將比較新、比較難,我們在評講時要教育學生有這方面的心理準備。
二、解答題:
15.解:(1)
∵ ∴┉┉┉┉┉┉┉┉┉┉┉┉┉4分
┉┉┉┉┉┉┉7分
(2)∵(
由正弦定理得(2sinA-sinC)cosB=sinBcosC┉┉┉┉┉┉8分
∴2sinAcosB-sinCcosB=sinBcosC ∴2sinAcosB=sin(B+C)
∵ ∴,
∴┉┉┉┉┉┉10分
∴┉┉┉┉┉┉11分
∴┉┉┉┉┉┉12分
又∵,∴ ┉┉┉┉┉┉13分
故函數(shù)f(A)的取值范圍是┉┉┉┉┉┉14分
16. 解:(1)∵函數(shù)的圖象的對稱軸為
要使在區(qū)間上為增函數(shù),
當且僅當>0且 ……………………………3分
若=1則=-1,
若=2則=-1,1
若=3則=-1,1; ……………………………5分
∴事件包含基本事件的個數(shù)是1+2+2=5
∴所求事件的概率為 ……………………………7分
(2)由(Ⅰ)知當且僅當且>0時,
函數(shù)上為增函數(shù),
依條件可知試驗的全部結果所構成的區(qū)域為
構成所求事件的區(qū)域為三角形部分。 ………………………………9分
由 ……………………………11分
∴所求事件的概率為 …………………………… 14分
17. (1)證明: 平面平面,,
平面平面=,平面,
平面, ,……… 2分
又為圓的直徑,, 平面!5分
(2)設的中點為,則,又,則,為平行四邊形, ……… 7分
,又平面,平面,
平面!9分
(3)過點作于,平面平面,
平面,,……… 11分
平面,
,……… 14分
. ……… 15分
18. 解:(1)因為直線:過定點T(4,3)……… 2分
由題意,要使圓的面積最小, 定點T(4,3)在圓上,
所以圓的方程為;……… 4分
(2)A(-5,0),B(5,0),設,則……(1)
,,
由成等比數(shù)列得,,
即,整理得:,
即……(2)
由(1)(2)得:,,
……………………… 9分
(3)
,……… 11分
由題意,得直線與圓O的一個交點為M(4,3),又知定點Q(,3),
直線:,,則當時有最大值32. ……… 14分
即有最大值為32,
此時直線的方程為.……… 15分
特別說明:第19題、第20題不是完整的壓軸題,原作者都有第3問設計,為了強化考試策略教育,讓學生有信心做壓軸題的開始一兩問,并在考前體會做好基礎題可以拿高分,我們特意進行了刪減處理。特別優(yōu)秀的班級(如市中的奧班,可以添加第三問(祥見文末附件),并將評分標準作相應調(diào)整。
19.解:(1)∵,其定義域為,
∴.……………………… 3分
∵是函數(shù)的極值點,∴,即.
∵,∴. ……………………… 6分
經(jīng)檢驗當時,是函數(shù)的極值點,
∴. ……………………… 8分
(2)由題意,可知方程在區(qū)間上有根,因為在上是單調(diào)減函數(shù),在上是單調(diào)增函數(shù),……………………… 10分
所以,……………………… 14分
……………………… 16分
20.解:(1) ┉┉┉┉┉┉2分
┉┉┉┉┉┉5分
┉┉┉┉┉┉8分
(2) ┉┉┉┉┉┉10分
┉┉┉┉┉┉12分
┉┉┉┉┉┉14分
┉┉┉┉┉┉16分
附加題部分
A(1)證明:因為,所以
又是圓O的直徑,所以
又因為(弦切角等于同弧所對圓周角)……………………3分
所以所以
又因為,所以相似
所以,即 ……………………5分
(2)解:因為,所以,
因為,所以
由(1)知:。所以 ……………………8分
所以,即圓的直徑
又因為,即
解得 ……………………10分
B.解:令 得到: ……………2分
解得: ……………………6
所以,矩陣A的特征值為2和3.
當, 令得,
所以,對應的特征向量為 ……………………8
當, 令得,所以,對應的特征向量為
矩陣A的兩個特征值分別是2和3,它們對應的特征向量分別是和.…10分
C.解:將直線的參數(shù)方程化為普通方程為: ……………………2分
將圓C的極坐標方程化為普通方程為: ………………4分
從圓方程中可知:圓心C(1,1),半徑 ,
所以,圓心C到直線的距離 …………6分
所以直線與圓C相交. ……………………7分
所以直線被圓C截得的弦長為.……………………10分
D.證明:要證原不等式成立,只須證:
即只須證:
由柯西不等式易知上式顯然成立,所以原不等式成立.
22.解:(1)設“小明中一等獎”為事件B1 ,“小輝中一等獎”為事件B2 ,事件B1與事件B2相互獨立,他們倆都中一等獎,則P(B1B2)=P(B1)P(B2)=0.0001
所以,購買兩張這種彩票都中一等獎的概率為.………..3分
(2)設“購買一張這種彩票中一等獎”為事件A,“購買一張這種彩票中二等獎”為事件B,顯然,事件A與事件B互斥,
所以, ……………………5分
故購買一張這種彩票能中獎的概率為0.1.……………………6分
(3)對應不中獎、中二等獎、中一等獎,的分布列如下:
……………………9分
購買一張這種彩票的期望收益為損失元.……………………10分
23. 解:(1)設P(x,y),根據(jù)題意,得.………3分
化簡,得.……………………………………………4分
(2)設過Q的直線方程為,代入拋物線方程,整理,得.
∴△=.解得.………………………………………6分
所求切線方程為(也可以用導數(shù)求得切線方程),
此時切點的坐標為(2,1),(-2,1),且切點在曲線C上. …………8分
由對稱性知所求的區(qū)域的面積為
.……………………………10分
附件:
第19題第3問:
(3)若對任意的都有成立,求實數(shù)的取值范圍.
(3)對任意的都有≥成立等價于對任意的都有≥.……………………… 7分
當[1,]時,.
∴函數(shù)在上是增函數(shù).
∴.………………………9分
∵,且,.
①當且
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com