2009年龍巖市高中畢業(yè)班質(zhì)量檢查數(shù)學(xué)(理科)試題

本試卷分第I卷(選擇題)和第Ⅱ卷(非選擇題),共4頁(yè). 全卷滿分150分,考試時(shí)間120分鐘.

參考公式:

樣本數(shù)據(jù)x1,x2,…,xn的標(biāo)準(zhǔn)差:                   s=,其中為樣本平均數(shù);

柱體體積公式:V=Sh ,其中S為底面面積,h為高;

錐體體積公式:V=Sh,其中S為底面面積,h為高;

球的表面積、體積公式:,其中R為球的半徑.

I卷(選擇題   50分)

一、選擇題:本題共10小題,每小題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

1. 已知復(fù)數(shù),則的共軛復(fù)數(shù)是

試題詳情

A.                          B.                         C.                             D.

試題詳情

2. 正項(xiàng)等比數(shù)列中,若,則等于

   A. -16                            B. 10                           C. 16                           D. 256

試題詳情

3. 已知隨機(jī)變量,若,則等于

試題詳情

   A. 0.1                                   B. 0.2                          C. 0.3                          D. 0.4

試題詳情

4. 已知兩個(gè)向量a、b滿足ab =-,| a |=4,a和b的夾角為135°,則| b |為

試題詳情

A. 12                             B. 3                             C. 6                             D.

試題詳情

5. 若 ,且, 則實(shí)數(shù)的值為

A. 1或3                       B. -3                          C. 1                             D. 1或 -3

試題詳情

6. 實(shí)數(shù)、滿足=的取值范圍是

試題詳情

A. [-1,0]                      B. -∞,0]                 C. [-1,+∞                D. [-1,1

試題詳情

7. 過拋物線的焦點(diǎn)作直線交拋物線于A、B兩點(diǎn),若線段AB中點(diǎn)的橫坐標(biāo)為3,則等于

  A.10                           B.8                           C.6                           D.4

試題詳情

8. 一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為,得2分的概率為,得0分的概率為0.5(投籃一次得分只能3分、2分、1分或0分),其中、,已知他投籃一次得分的數(shù)學(xué)期望為1,則的最大值為

試題詳情

A.                           B.                        C.                       D.

試題詳情

9. 設(shè)函數(shù) 則函數(shù)的零點(diǎn)個(gè)數(shù)為

A.  4個(gè)                        B.  3個(gè)                      C.  2個(gè)                      D.  1個(gè)

試題詳情

10. 如果一個(gè)數(shù)列的各項(xiàng)都是實(shí)數(shù),且從第二項(xiàng)開始,每一項(xiàng)與它前一項(xiàng)的平方差是相同的常數(shù),則稱該數(shù)列為等方差數(shù)列,這個(gè)常數(shù)叫做這個(gè)數(shù)列的公方差.設(shè)數(shù)列是首項(xiàng)為2,公方差為2的等方差數(shù)列,若將這種順序的排列作為某種密碼,則這種密碼的個(gè)數(shù)為

A.  18個(gè)                      B.  256個(gè)                   C.  512個(gè)                  D.  1024個(gè)

第Ⅱ卷(非選擇題    100分)

試題詳情

二、填空題:本大題共5小題,每小題4分,共20分,把答案填在答題卡的相應(yīng)位置.

11. 假設(shè)關(guān)于某設(shè)備的使用年限和所支出的維修費(fèi)(萬元),有如下的統(tǒng)計(jì)資料

試題詳情

使用年限

2

3

4

5

6

試題詳情

維修費(fèi)用

試題詳情

2.2

試題詳情

3.8

試題詳情

5.5

試題詳情

6.5

試題詳情

7.0

試題詳情

若由資料可知呈相關(guān)關(guān)系,由表中數(shù)據(jù)算出線性回歸方程中的=,據(jù)此估計(jì),使用年限為10年時(shí)的維修費(fèi)用是           萬元.

試題詳情

(參考公式:,

試題詳情

 

試題詳情

12. 已知某算法的流程圖如圖所示,

則輸出的結(jié)果是_______________.

 

試題詳情

13.  一個(gè)空間幾何體的三視圖如圖所示,其正視圖、側(cè)視圖、

試題詳情

俯視圖均為等腰直角三角形,且直角邊長(zhǎng)都為1,則它的

外接球的表面積是               .

試題詳情

14. 設(shè)函數(shù)(),若,

試題詳情

,則=         .

試題詳情

15. 已知集合,

有下列命題

試題詳情

 則.

試題詳情

.

試題詳情

的圖象關(guān)于原點(diǎn)對(duì)稱.

試題詳情

則對(duì)于任意不等的實(shí)數(shù),總有成立.

其中所有正確命題的序號(hào)是         .

試題詳情

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟.

16. (本小題滿分13分)

試題詳情

已知的三個(gè)內(nèi)角、、所對(duì)的邊分別為、,且

試題詳情

.

試題詳情

(Ⅰ)求的值;

試題詳情

(Ⅱ)當(dāng)時(shí),求函數(shù)的最大值.

試題詳情

17.(本小題滿分13分)

試題詳情

如圖,正方形所在平面與等腰直角三角形所在平面

試題詳情

互相垂直,,點(diǎn)分別為的中點(diǎn).

試題詳情

(Ⅰ)求證:∥平面

試題詳情

(Ⅱ)線段上是否存在一點(diǎn),使與平面

試題詳情

 所成角的正弦值為?若存在,請(qǐng)求出

值;若不存在,請(qǐng)說明理由.

試題詳情

18. (本小題滿分13分)

試題詳情

某電腦生產(chǎn)企業(yè)生產(chǎn)一品牌筆記本電腦的投入成本是4500元/臺(tái). 當(dāng)筆記本電腦銷售價(jià)為6000元/臺(tái)時(shí),月銷售臺(tái);根據(jù)市場(chǎng)分析的結(jié)果表明,如果筆記本電腦的銷售價(jià)提高的百分率,那么月銷售量減少的百分率.記銷售價(jià)提高的百分率時(shí),電腦企業(yè)的月利潤(rùn)是(元).

試題詳情

(Ⅰ)寫出月利潤(rùn)(元)與的函數(shù)關(guān)系式;

(Ⅱ)試確定筆記本電腦的銷售價(jià),使得電腦企業(yè)的月利潤(rùn)最大.

試題詳情

19.(本小題滿分13分)

Q

個(gè)焦點(diǎn)是(1,0),兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)

構(gòu)成等邊三角形.

試題詳情

(Ⅰ)求橢圓的方程;

試題詳情

(Ⅱ)過點(diǎn)(4,0)且不與坐標(biāo)軸垂直的直線交橢圓、兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為.

試題詳情

(?)求證:直線軸上一定點(diǎn),并求出此定點(diǎn)坐標(biāo);

試題詳情

(?)求△面積的取值范圍.

試題詳情

20.(本小題滿分14分)已知函數(shù).

試題詳情

(Ⅰ)求函數(shù)的單調(diào)遞增區(qū)間;

試題詳情

(Ⅱ)數(shù)列滿足:,且,記數(shù)列的前n項(xiàng)和為,

試題詳情

.

試題詳情

(?)求數(shù)列的通項(xiàng)公式;并判斷是否仍為數(shù)列中的項(xiàng)?若是,請(qǐng)證明;否則,說明理由.

試題詳情

(?)設(shè)為首項(xiàng)是,公差的等差數(shù)列,求證:“數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)”的充要條件是“存在整數(shù),使”.

 

試題詳情

21. 本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分.

(1)(本小題滿分7分)選修4-2:矩陣與變換

試題詳情

若點(diǎn)在矩陣     對(duì)應(yīng)變換的作用下得到的點(diǎn)為,求矩陣的逆矩陣.

  (2)(本小題滿分7分)選修4-4:坐標(biāo)系與參數(shù)方程

試題詳情

已知曲線的極坐標(biāo)方程是.以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是參數(shù)),點(diǎn)是曲線上的動(dòng)點(diǎn),點(diǎn)是直線上的動(dòng)點(diǎn),求||的最小值.

(3)(本小題滿分7分)選修4-5:不等式選講

試題詳情

已知實(shí)數(shù)滿足的最大值是7,求的值.

 

 

 

2009年龍巖市高中畢業(yè)班質(zhì)量檢查

試題詳情

 

說明:

       一、本解答指出了每題要考查的主要知識(shí)和能力,并給出了一種或幾種解法供參考,如果考生的解法與本解答不同,可根據(jù)試題的主要考查內(nèi)容比照評(píng)分標(biāo)準(zhǔn)制定相應(yīng)的評(píng)分細(xì)則.

       二、對(duì)計(jì)算題,當(dāng)考生的解答在某一步出現(xiàn)錯(cuò)誤時(shí),如果后繼部分的解答未改變?cè)擃}的內(nèi)容和難度,可視影響的程度決定后繼部分的給分,但不得超過該部分正確解答應(yīng)給分?jǐn)?shù)的一半;如果后繼部分的解答有較嚴(yán)重的錯(cuò)誤,就不再給分.

       三、解答右端所注分?jǐn)?shù),表示考生正確做到這一步應(yīng)得的累加分?jǐn)?shù).

       四、只給整數(shù)分?jǐn)?shù),選擇題和填空題不給中間分.

一、選擇題:本題考查基本知識(shí)和基本運(yùn)算,每小題5分,滿分50分.

1. A        2. C        3. C        4.C         5.D         6.D         7. B        8. D        9. B        10. C

二、填空題:本題考查基本知識(shí)和基本運(yùn)算,每小題4分,滿分20分.

11.  12.38            12.  5           13.  3        14.     15. ②③

三、解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明,證明過程或演算步驟.

16. 本小題主要考查正弦定理、三角函數(shù)的倍角公式、兩角和公式等基本知識(shí),考

查學(xué)生的運(yùn)算求解能力. 滿分13分.

解:(Ⅰ)由,知                 ………………………(2分)

,得,

          ,                   ………(5分)

                                   ………(6分)

(Ⅱ) 由(Ⅰ)知,

          

                   ………………(9分)

        

         當(dāng),即時(shí),取得最大值為.   ……(13分)                               

17. 本題主要考查線線、線面、面面位置關(guān)系,線面角等基本知識(shí),考查空間想像能力,運(yùn)算求解能力和推理論證能力. 滿分13分.

解:(Ⅰ)證明:如圖,取中點(diǎn),連結(jié);

,,

,,

,…………(3分)

四邊形為平行四邊形,

平面,平面,

∥平面.                        ………………………(6分)

(Ⅱ)依題意知平面平面,

平面,得  

,.

如圖,以為原點(diǎn),建立空間直角坐標(biāo)系-xyz

,可得、、

.

設(shè)平面的一個(gè)法向量為,

   得

解得,.            ………………(9分)

設(shè)線段上存在一點(diǎn),其中,則,

,

依題意:,即

可得,解得(舍去).  

 所以上存在一點(diǎn).   …………(13分)

18.本題主要考查函數(shù)與導(dǎo)數(shù)等基本知識(shí),考查運(yùn)用數(shù)學(xué)知識(shí)分析問題與解決問題的能力,

考查應(yīng)用意識(shí). 滿分13分.

  解:(Ⅰ)依題意,銷售價(jià)提高后為6000(1+)元/臺(tái),月銷售量為臺(tái)…(2分)

               ……………………(4分)

.       ……………………(6分)

(Ⅱ),得,

解得舍去).                      ……………………(9分)

當(dāng) 當(dāng)當(dāng)時(shí),取得最大值.

此時(shí)銷售價(jià)為元.

答:筆記本電腦的銷售價(jià)為9000元時(shí),電腦企業(yè)的月利潤(rùn)最大.…………………(13分)

19.本題主要考查直線與橢圓的位置關(guān)系、不等式的解法等基本知識(shí),考查運(yùn)算求解能力和分析問題、解決問題的能力. 滿分13分

解:(Ⅰ)因?yàn)闄E圓的一個(gè)焦點(diǎn)是(1,0),所以半焦距=1.

因?yàn)闄E圓兩個(gè)焦點(diǎn)與短軸的一個(gè)端點(diǎn)構(gòu)成等邊三角形.

所以,解得

所以橢圓的標(biāo)準(zhǔn)方程為.  …(4分)                

(Ⅱ)(i)設(shè)直線聯(lián)立并消去得:.

,,

,

.  ……………(5分)

A關(guān)于軸的對(duì)稱點(diǎn)為,得,根據(jù)題設(shè)條件設(shè)定點(diǎn)為,0),

,即.所以

即定點(diǎn)(1 , 0).                ……(8分)

(ii)由(i)中判別式,解得.     可知直線過定點(diǎn) (1,0).

所以          ……………(10分)

,  令

,得,當(dāng)時(shí),.

上為增函數(shù). 所以 ,

.故△OA1B的面積取值范圍是.           …(13分)

20. 本題主要考查函數(shù)的單調(diào)性、等差數(shù)列、不等式等基本知識(shí),考查運(yùn)用合理的推理證明解決問題的方法,考查分類與整合及化歸與轉(zhuǎn)化等數(shù)學(xué)思想. 滿分14分.

解:(Ⅰ)因?yàn)?sub>,

所以.           ………………(1分)

(i)當(dāng)時(shí),.

(ii)當(dāng)時(shí),由,得到,知在.

(iii)當(dāng)時(shí),由,得到,知在.

綜上,當(dāng)時(shí),遞增區(qū)間為;當(dāng)時(shí), 遞增區(qū)間為.                   …………(4分)

(Ⅱ)(i)因?yàn)?sub>,所以,即,

,即.     ……………………………………(6分)

因?yàn)?sub>,

當(dāng)時(shí),,

當(dāng)時(shí),,

所以.                  …………………………(8分)

又因?yàn)?sub>,

所以令,則

得到矛盾,所以不在數(shù)列中.    ………(9分)

(ii)充分性:若存在整數(shù),使.

設(shè)為數(shù)列中不同的兩項(xiàng),則.

,所以.

是數(shù)列的第項(xiàng).           ……………………(10分)

必要性:若數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng),

,,(,為互不相同的正整數(shù))

,令,

得到

所以,令整數(shù),所以. ……(11 分)

下證整數(shù).若設(shè)整數(shù).令,

由題設(shè)取使

,所以

相矛盾,所以.

綜上, 數(shù)列中任意不同兩項(xiàng)之和仍為數(shù)列中的項(xiàng)的充要條件是存在整數(shù),使.                          ……………………(14分)

21. (1)本題主要考查矩陣乘法、逆矩陣與變換等基本知識(shí),考查運(yùn)算求解能力, 滿分7分.

解: ,即

所以  得              …………(4分)

     即M=   , .

=1 ,  .          …………(7分)

(2)本題主要考查圓極坐標(biāo)方程和直線參數(shù)方程等基本知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想. 滿分7分.

解:曲線的極坐標(biāo)方程可化為,

其直角坐標(biāo)方程為,即.      ………(2分)

直線的方程為.

所以,圓心到直線的距離          ………(5分)

所以,的最小值為.                 …………(7分)

(3)本題主要考查柯西不等式與不等式解法等基本知識(shí),考查化歸與轉(zhuǎn)化思想. 滿分7分.

解:由柯西不等式:

. …………(3分)

因?yàn)?sub>

所以,即

因?yàn)?sub>的最大值是7,所以,得,

當(dāng)時(shí),取最大值,

所以.                         ……………………(7分)

 

 


同步練習(xí)冊(cè)答案
<option id="dyqht"></option>