皖東十校09屆第一次聯(lián)考試卷數(shù)學(xué)(理)

參考公式:

本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分.第Ⅰ卷1至2頁(yè),第Ⅱ卷3至4頁(yè).考試結(jié)束后,將本試卷和答題卡一并交回.

 

1.設(shè)集合,則滿足的集合的個(gè)數(shù)是                                                       

A.0             B.1              C.2              D.3

2.如果復(fù)數(shù),則的展開(kāi)式(按的升冪排列)的第5項(xiàng)是

A .35            B.           C.           D. 

3.下列是關(guān)于函數(shù)的幾個(gè)命題:

①若且滿足則是的一個(gè)零點(diǎn);

②若是在上的零點(diǎn),則可用二分法求的近似值;

③函數(shù)的零點(diǎn)是方程的根,但的根不一定是函數(shù)的零點(diǎn);

④用二分法求方程的根時(shí),得到的都是近似值。

那么以上敘述中,正確的個(gè)數(shù)為                                      

A .0              B.1           C.3         D.4

4.若函數(shù)是定義域?yàn)榈脑龊瘮?shù),則函數(shù)的

圖像大致是

    

5.在中,分別為三個(gè)內(nèi)角 所對(duì)應(yīng)的邊,設(shè)向量

,,若,則角的大小為

                                                        

A.           B.           C.        D.

6.如圖是一個(gè)幾何體的三視圖,則這個(gè)幾何體的體積是    

A.27                   B.30     C.33               D.36

 

 

 

 

 

 

 

 

 

 

7.在等比數(shù)列中,已知,那么

                                                      

A.4             B.6              C.12         D.16

8.在樣本的頻率發(fā)布直方圖中,共有11個(gè)小長(zhǎng)方形,若其中一個(gè)小長(zhǎng)方形的面積等于其他10個(gè)小長(zhǎng)方形面積和的四分之一,樣本容量為160,則該小長(zhǎng)方形這一組的頻數(shù)為                          A .32             B.              C.40           D. 

9.已知函數(shù)的最大值為2,則的最小正周期為

                                                                                      

A.           B.           C.            D. 

10. 若,則大小關(guān)系是  

A.                     B.     C.                    D.

11.已知二次曲線,則當(dāng)時(shí),該曲線的離心率的取值范圍是

A.            B.            C.    D.

12.在一次實(shí)驗(yàn)中,測(cè)得的四組值為,則與之間的回歸直線方程為                                                  

A.                   B.               

C.                    D.

第Ⅱ卷(非選擇題 共90分)

二、填空題:本大題共4小題,每小題4分,共16分.

13.在可行域內(nèi)任取一點(diǎn)規(guī)范如框圖所示,則能輸出數(shù)對(duì)的概率是       

                                 

 

 

 

 

 

 

 

 

試題詳情

14.不等式的解集是       

試題詳情

15.已知是定義在上的減函數(shù),其圖象經(jīng)過(guò)、兩點(diǎn),則不等式的解集是_________________。   

試題詳情

16.已知直線與圓交于兩點(diǎn),且,其中 為坐標(biāo)原點(diǎn),則實(shí)數(shù)的值為_(kāi)________________。   

試題詳情

三、解答題:本大題共6小題,共74分。解答應(yīng)寫出文字說(shuō)明,證明過(guò)程或演算步驟。

17.(本小題滿分12分)

設(shè)平面上、兩點(diǎn)的坐標(biāo)分別是、,其中。

(I)求的表達(dá)式;

(II)記,求函數(shù)的最小值。

試題詳情

18.(理)(本小題滿分12分)

試題詳情

       某安全生產(chǎn)監(jiān)督部門對(duì)5家小型煤礦進(jìn)行安全檢查(簡(jiǎn)稱安檢),若安檢不合格,則必須整改,整改后經(jīng)復(fù)查仍不合格,則強(qiáng)制關(guān)閉,設(shè)每家煤礦安檢是否合格是相互獨(dú)立的,且每家煤礦整改前合格的概率是0.5,整改后安檢合格的概率是0.8,度求(結(jié)果精確到0.01)

       (I)恰好有兩家煤礦必須整改的概率;

       (II)平均有多少家煤礦必須整改;

       (III)至少關(guān)閉一家煤礦的概率。

試題詳情

19.(本小題滿分12分)

如圖,多面體的直觀圖及三視圖如圖所示,E、F分別為PC、BD的中點(diǎn).

(I)求證:EF∥平面PAD;

(II)求證:平面PDC⊥平面PAD.

試題詳情

20.(本小題滿分14分)設(shè)函數(shù),,函數(shù)的圖象與軸的交點(diǎn)也在函數(shù)的圖象上,且在此點(diǎn)有公切線.

   (I)求、的值;

   (II)對(duì)任意的大小.

試題詳情

21.(本小題共14分)已知函數(shù)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn),且的前

   (I)求數(shù)列的通項(xiàng)公式;(文理)

   (II)若數(shù)列(文理)

  

22(理).已知橢圓的離心率為,直線:與以原點(diǎn)為圓心、以橢圓的短半軸長(zhǎng)為半徑的圓相切.

   (I)求橢圓的方程;

   (II)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn),直線過(guò)點(diǎn)且垂直于橢圓的長(zhǎng)軸,動(dòng)直線垂直于點(diǎn),線段垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

   (III)設(shè)與軸交于點(diǎn),不同的兩點(diǎn)在上,且滿足求的取值范圍.

 

試題詳情

 

 

一、選擇題:(1)-(12)CAADB 。拢粒粒茫摹 。茫

二、填空題:(13)  (14)  (15)  (16)

三、解答題:

(17)解:(1)                                   …………6分

(2)                 …………8分

 時(shí),

當(dāng)時(shí),

當(dāng)時(shí),……11分

綜上所述:………………12分

(18)解:(1)每家煤礦必須整改的概率1-0.5,且每家煤礦是否整改是相互獨(dú)立的,所以恰好有兩家煤礦必須整改的概率是

                   ………………4分

(2)由題設(shè),必須整改的煤礦數(shù)服從二項(xiàng)分布,從而的數(shù)學(xué)期望是

,即平均有2.50家煤礦必須整改.       ………………8分

(3)某煤礦被關(guān)閉,即煤礦第一次安檢不合格,整改后復(fù)查仍不合格,所以該煤礦被關(guān)閉的概率是,從而該煤礦不被關(guān)閉的概率是0.9,由題意,每家煤礦是否關(guān)閉是相互獨(dú)立的,所以5家煤礦都不被關(guān)閉的概率是

從而至少關(guān)閉一家煤礦的概率是          ………………12分

(19)證明:由多面體的三視圖知,四棱錐的底面是邊長(zhǎng)為的正方形,側(cè)面是等腰三角形,,

且平面平面.……2分

(1)      連結(jié),則是的中點(diǎn),

在△中,,………4分

   且平面,平面,

 ∴∥平面  ………6分

(2) 因?yàn)槠矫妗推矫妫?

平面∩平面,

 又⊥,所以,⊥平面,

∴⊥ …………8分

又,,所以△是

等腰直角三角形,

且,即………………10分

 又, ∴ 平面,

又平面,

所以  平面⊥平面  ………………12分

(20)解:設(shè)

,

              ………………6分

(2)由題意得上恒成立。

即在[-1,1]上恒成立。

設(shè)其圖象的對(duì)稱軸為直線,所以上遞減,

故只需,,即………………12分

(21)解:(I)由

                                             

                                                                                                   

    所以,數(shù)列                        …………6分

   (II)由得:

                                                                                

     …………(1)                             

     …………(2)                   …………10分

   (2)-(1)得:

                                             …………12分

(22)解:(Ⅰ)∵  

∵直線相切,

∴   ∴    …………3分

∵橢圓C1的方程是     ………………6分

(Ⅱ)∵M(jìn)P=MF2,

∴動(dòng)點(diǎn)M到定直線的距離等于它到定點(diǎn)F1(1,0)的距離,

∴動(dòng)點(diǎn)M的軌跡是C為l1準(zhǔn)線,F(xiàn)2為焦點(diǎn)的拋物線  ………………6分

∴點(diǎn)M的軌跡C2的方程為    …………9分

(Ⅲ)Q(0,0),設(shè) 

∴ 

∵,化簡(jiǎn)得

∴    ………………11分

當(dāng)且僅當(dāng) 時(shí)等號(hào)成立   …………13分

∴當(dāng)?shù)娜≈捣秶?/p>

……14分


同步練習(xí)冊(cè)答案