由內(nèi)壁光滑的細(xì)管制成的直角三角形管道ABC安放在豎直平面內(nèi),BC邊水平,AC管長5m,直角C處是小的圓弧,∠B=37??。從角A處無初速度地釋放兩個光滑小球(小球的直徑比管徑略。,第一個小球沿斜管AB到達(dá)B處,第二個小球沿豎管AC到C再沿橫管CB到B處,(已知,管內(nèi)無空氣阻力,取g=10m/s2)求

兩小球到達(dá)B點(diǎn)時的速度大小之比

兩小球到達(dá)B點(diǎn)時的時間之比

(1)1:1      (2)1:1  

   


解析:

(1)設(shè)AC長為,小球到達(dá)B點(diǎn)時的速度為,根據(jù)機(jī)械能守恒定律,

           ……………(3分)

        所以……………(2分)

      可見小球的速度只與高度有關(guān),與路徑無關(guān),

       ……………(3分)

 (2) 第一個小球的運(yùn)動時間由  定    ……(1分)

        根據(jù)牛頓第二定律  得……(1分)

       故……(1分)

     第二個小球在豎管中的運(yùn)動時間由    得……………⑤(2分)

     第二個小球在橫管中做勻速直線運(yùn)動,運(yùn)動時間由定…………(1分)

    所以…………(2分)

    所求

該比值與hg的取值無關(guān)  

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

精英家教網(wǎng)如圖所示,AB是根據(jù)某平拋運(yùn)動軌跡制成的內(nèi)壁光滑的細(xì)圓管軌道,軌道上端A與一光滑斜槽的末端水平面相切.已知細(xì)圓管軌道的水平長度為S=2.4m;兩端口連線與水平方向的夾角α=37°.(取sin37°=0.6,cos37°=0.8,g=10m/s2)求
(1)要使一小球能不與細(xì)圓管軌道壁發(fā)生碰撞地通過細(xì)圓管軌道,小球要從距光滑斜槽末端多少高度h1處由靜止開始下滑?
(2)若小球從距光滑斜槽底端高度h2=1.2m處由靜止開始下滑,求小球從細(xì)圓管軌道的下端B出口飛出時速度的水平分量vx

查看答案和解析>>

同步練習(xí)冊答案