分析 (1)只要進(jìn)入磁場(chǎng)的粒子電場(chǎng)力做功是一定的,由動(dòng)能定理可以求出進(jìn)入磁場(chǎng)的速率,由洛侖茲力提供向心力就能求出粒子在磁場(chǎng)做勻速圓周運(yùn)動(dòng)的半徑.
(2)先由左手定則判斷出粒子做順時(shí)針勻速圓周運(yùn)動(dòng),當(dāng)從邊界線(xiàn)最左邊射入磁場(chǎng)的軌跡與上邊界相切時(shí),此種情況下磁場(chǎng)區(qū)域最寬,由此畫(huà)出軌跡,由幾何關(guān)系就能求出磁場(chǎng)區(qū)域的最小寬度.
(3)由于磁場(chǎng)的寬度與粒子的半徑相等,所以在想象中拿一個(gè)定圓在寬度一定的磁場(chǎng)區(qū)域移動(dòng),這樣可以找到打在磁場(chǎng)上邊緣最左端的位置--即從最左端進(jìn)入磁場(chǎng)的粒子打在最左端,最右的位置顯然是豎直向上射出的粒子恰好與上邊緣相切,由幾何關(guān)系求出兩點(diǎn)的距離即為所求;至于最長(zhǎng)時(shí)間,顯然偏轉(zhuǎn)角最大的--即打在最左端的粒子恰好轉(zhuǎn)過(guò)半周,所以最長(zhǎng)時(shí)間是半個(gè)周期.
解答 解:(1)帶電粒子從電場(chǎng)進(jìn)入磁場(chǎng),由動(dòng)能定理有:
$Eqd=\frac{1}{2}m{v}^{2}-\frac{1}{2}m{{v}_{0}}^{2}$
進(jìn)入磁場(chǎng)后,洛侖茲力提供向心力:
$qvB=m\frac{{v}^{2}}{r}$
聯(lián)立兩式得:v=2×106m/s,r=0.2m
(2)在O點(diǎn)水平向左或向右方向射出的粒子做類(lèi)平拋運(yùn)動(dòng),其偏向角與水平方向
夾角為θ,則:
$tanθ=\frac{\sqrt{2\frac{Eq}{m}d}}{{v}_{0}}=\frac{\sqrt{2×\frac{1.5×1{0}^{5}×3.2×1{0}^{-19}}{6.4×1{0}^{-27}}×0.2}}{1.0×1{0}^{6}}$=$\sqrt{3}$,
所以θ=60°
當(dāng)從最左邊射出的粒子進(jìn)入磁場(chǎng)后是一個(gè)優(yōu)弧,當(dāng)該優(yōu)弧與磁場(chǎng)上邊界相切時(shí),
由幾何關(guān)系有磁場(chǎng)寬度為d=Lmin=r+rcos60°=0.2m+02.×0.5m=0.3m
(3)水平向左射出的粒子打在A(yíng)點(diǎn),水平位移:
x=v0t=v0$\sqrt{\frac{2ran2m7f_{1}}{\frac{Eq}{m}}}$=$1.0×1{0}^{5}×\sqrt{\frac{2×0.2×6.4×1{0}^{-27}}{1.5×1{0}^{5}×3.2×1{0}^{-19}}}m$=$\frac{0.4\sqrt{3}}{3}m$=0.23m
從A點(diǎn)與水平方向成60°射出的粒子做勻速圓周運(yùn)動(dòng)打在上邊邊界的P點(diǎn),由對(duì)稱(chēng)
性,可知P點(diǎn)偏離O點(diǎn)的左邊x=0.23m.Ⅲ
顯然從O點(diǎn)豎直向上射出的粒子劃過(guò)四分之一圓弧打在Q點(diǎn),該點(diǎn)是粒子打擊的
最右端.由幾何關(guān)系可知Q點(diǎn)偏離O點(diǎn)的右邊r=0.2m
所以能夠從FG邊緣穿出的長(zhǎng)度范圍為x+r=0.43m
顯然豎直向上射出的粒子恰恰在磁場(chǎng)中轉(zhuǎn)過(guò)半周,轉(zhuǎn)180再回到MN,此種情況粒子在磁場(chǎng)中運(yùn)動(dòng)時(shí)間最長(zhǎng).
${t}_{max}=\frac{1}{2}T=\frac{1}{2}×\frac{2×3.14×0.2}{2×1{0}^{6}}s$=3.14×10-7s
答:(1)粒子在磁場(chǎng)中做圓周運(yùn)動(dòng)的半徑為0.2m.
(2)要使所有粒子不從FG邊界射出,磁場(chǎng)垂直邊界MN方向上的最小寬度d為0.3m.
(3)若磁場(chǎng)垂直邊界MN方向上的寬度為0.2m,邊界FG上有粒子射出的長(zhǎng)度范圍為0.43m、粒子首次在磁場(chǎng)中運(yùn)動(dòng)的最長(zhǎng)時(shí)間為3.14×10-7s.
點(diǎn)評(píng) 本題的第一問(wèn)只是為后兩問(wèn)做一個(gè)鋪墊,做每二問(wèn)時(shí)要注意粒子的偏轉(zhuǎn)方向,只有從最左端以一定角度射入磁場(chǎng)的粒子的軌跡恰與上邊緣相切時(shí),磁場(chǎng)寬度最小,由幾何關(guān)系關(guān)系就能求出結(jié)果;第三問(wèn)由于磁場(chǎng)寬度與粒子的半徑相同,所以要找到粒子打在最左和最右的位置,再由幾何關(guān)系求出長(zhǎng)度,以上兩問(wèn)幾乎是在做平面幾何的數(shù)學(xué)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中物理 來(lái)源: 題型:多選題
A. | 若v0>v,工件先減速后勻速 | |
B. | 若v0>v,工件先減速后以另一加速度再減速 | |
C. | 若v0<v,工件先加速后勻速 | |
D. | 若v0<v,工件一直減速 |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:多選題
A. | 重力勢(shì)能減小10J | B. | 電勢(shì)能增大5J | C. | 機(jī)械能減小3J | D. | 動(dòng)能增大12J |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:多選題
A. | 物塊滑動(dòng)時(shí)受的摩擦力大小是3N | |
B. | 物塊的質(zhì)量為2kg | |
C. | 物塊在6-9s內(nèi)的加速度大小是2m/s2 | |
D. | 物塊在前9s內(nèi)的平均速度大小是4m/s |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:選擇題
A. | mg mgh | |
B. | mg+qE mgh | |
C. | $\sqrt{{m}^{2}{g}^{2}+{q}^{2}{E}^{2}}$ $\sqrt{{m}^{2}{g}^{2}+{q}^{2}{E}^{2}}$•h | |
D. | $\sqrt{{m}^{2}{g}^{2}+{q}^{2}{E}^{2}}$ mgh |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:多選題
A. | 能通過(guò)狹縫P的帶電粒子的速率等于$\frac{B}{E}$ | |
B. | 速度選擇器中的磁場(chǎng)方向垂直紙面向外 | |
C. | 質(zhì)譜儀是一種可測(cè)定帶電粒子比荷的儀器 | |
D. | 粒子打在膠片上的位置越靠近狹縫P,粒子的比荷越大 |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:多選題
A. | 0 | B. | 2m/s | C. | 1m/s | D. | 大于2m/s |
查看答案和解析>>
科目:高中物理 來(lái)源: 題型:計(jì)算題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com