開普勒1609年一1619年發(fā)表了著名的開普勒行星運(yùn)行三定律,其中第三定律的內(nèi)容是:所有行星的橢圓軌道的半長(zhǎng)軸的三次方跟公轉(zhuǎn)周期的平方的比值都相等.萬有引力定律是科學(xué)史上最偉大的定律之一,它于1687年發(fā)表在牛頓的《自然哲學(xué)的數(shù)學(xué)原理中》.
(1)請(qǐng)從開普勒行星運(yùn)動(dòng)定律等推導(dǎo)萬有引力定律(設(shè)行星繞太陽的運(yùn)動(dòng)可視為勻速圓周運(yùn)動(dòng));
(2)萬有引力定律的正確性可以通過“月-地檢驗(yàn)”來證明:
如果重力與星體間的引力是同種性質(zhì)的力,都與距離的二次方成反比關(guān)系,那么,由于月心到地心的距離是地球半徑的60倍;月球繞地球做近似圓周運(yùn)動(dòng)的向心加速度就應(yīng)該是重力加速度的1/3600.
試根據(jù)上述思路并通過計(jì)算證明:重力和星體間的引力是同一性質(zhì)的力(已知地球半徑為6.4×106m,月球繞地球運(yùn)動(dòng)的周期為28天,地球表面的重力加速度為9.8m/s2).