(2012?虹口區(qū)二模)如圖(1)所示,圓柱形氣缸的上部有小擋板,可以阻止活塞滑離氣缸,氣缸內(nèi)部的高度為d,質(zhì)量不計的薄活塞將一定質(zhì)量的氣體封閉在氣缸內(nèi).開始時活塞離底部高度為
23
d
,溫度為t1=27℃,外界大氣壓強(qiáng)為p0=1.0×l05Pa,現(xiàn)對氣體緩緩加熱.求:
(1)氣體溫度升高到t2=127℃時,活塞離底部的高度;
(2)氣體溫度升高到t3=387℃時,缸內(nèi)氣體的壓強(qiáng);
(3)在圖(2)中畫出氣體從27℃升高到387℃過程的壓強(qiáng)和溫度的關(guān)系圖線.
分析:(1)(2)假設(shè)氣體溫度升高到tc時,活塞恰好移動到擋板處,氣體做等壓變化,根據(jù)蓋?呂薩克定律求出tc,根據(jù)題中提供的溫度與tc的關(guān)系,分析氣體發(fā)生何種變化,氣體溫度升高到t2=127℃時,封閉氣體發(fā)生等壓變化,根據(jù)呂薩克定律求解氣體溫度升高到t2=127℃時活塞離底部的高度;若溫度高于tc,氣體發(fā)生等容變化,根據(jù)查理定律求解壓強(qiáng).
(3)根據(jù)氣體狀態(tài)變化過程,及狀態(tài)參量,作出氣體從27℃升高到387℃過程的壓強(qiáng)和溫度的關(guān)系圖線.
解答:解:(1))假設(shè)氣體溫度升高到tc時,活塞恰好移動到擋板處,氣體做等壓變化,設(shè)氣缸截面積為S.根據(jù)蓋?呂薩克定律得
   
V1
T1
=
Vc
Tc

2
3
dS
273+27
=
dS
273+tc

解得,tc=177℃
因為t2=127℃<tc=177℃,所以溫度升高到127℃前,氣體發(fā)生等壓變化,
設(shè)活塞離底部的高度為h,由蓋?呂薩克定律得
   
V1
T1
=
V2
T2

其中V2=hS
代入解得 h=
8
9
d

(2)氣體溫度高于tc時,活塞受到擋板的阻礙,氣體體積不再發(fā)生變化,由查理定律得
   
P0
Tc
=
P3
T3

得P3=
273+t3
273+tc
P0
=1.467×105Pa
(3)根據(jù)三個狀態(tài)的壓強(qiáng)和溫度,采用描點法,作出氣體從27℃升高到387℃過程的壓強(qiáng)和溫度的關(guān)系圖線如圖.
答:(1)氣體溫度升高到t2=127℃時,活塞離底部的高度為
8
9
d
;
(2)氣體溫度升高到t3=387℃時,缸內(nèi)氣體的壓強(qiáng)是1.467×105Pa;
(3)畫出氣體從27℃升高到387℃過程的壓強(qiáng)和溫度的關(guān)系圖線如圖.
點評:本題的解題關(guān)鍵是確定氣體的狀態(tài)變化過程,通過求解臨界溫度tc,判斷氣體作何種狀態(tài)變化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

(2012?虹口區(qū)二模)如圖所示,在柱形容器中裝有部分水,容器上方有一可自由移動的活塞.容器水面浮有一個木塊和一個一端封閉、開口向下的玻璃管,玻璃管中有部分空氣,系統(tǒng)穩(wěn)定時,玻璃管內(nèi)空氣柱在管外水面上方的長度為a,空氣柱在管外水面下方的長度為b,水面上方木塊的高度為c,水面下方木塊的高度為d.現(xiàn)在活塞上方施加豎直向下、且緩緩增大的力F,使活塞下降一小段距離(未碰及玻璃管和木塊),下列說法中正確的是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

(2012?虹口區(qū)二模)在水平放置的光滑絕緣桿ab上,掛有兩個金屬環(huán)M和N,兩環(huán)套在一個通電密繞長螺線管的中部,螺線管中部區(qū)域的管外磁場可以忽略.當(dāng)變阻器的滑動頭向左移動時,兩環(huán)的運動情況是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

(2012?虹口區(qū)二模)有關(guān)固體和液體,下列說法中正確的是(  )

查看答案和解析>>

科目:高中物理 來源: 題型:

(2012?虹口區(qū)二模)關(guān)于α射線、β射線和γ射線,下列說法中正確的是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

(2012?虹口區(qū)二模)盧瑟福在1919年以α粒子(
 
4
2
He
)撞擊氮原子核(
 
14
7
N
),產(chǎn)生核反應(yīng).該反應(yīng)生成兩種粒子,其中一種為
 
17
8
O
,則另一種粒子為(  )

查看答案和解析>>

同步練習(xí)冊答案