相關(guān)習(xí)題
 0  266223  266231  266237  266241  266247  266249  266253  266259  266261  266267  266273  266277  266279  266283  266289  266291  266297  266301  266303  266307  266309  266313  266315  266317  266318  266319  266321  266322  266323  266325  266327  266331  266333  266337  266339  266343  266349  266351  266357  266361  266363  266367  266373  266379  266381  266387  266391  266393  266399  266403  266409  266417  266669 

科目: 來源: 題型:

【題目】如圖,四棱錐的底面是正方形,平面,.

1)證明:平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已如橢圓E)的離心率為,點(diǎn)E.

1)求E的方程:

2)斜率不為0的直線l經(jīng)過點(diǎn),且與E交于P,Q兩點(diǎn),試問:是否存在定點(diǎn)C,使得?若存在,求C的坐標(biāo):若不存在,請說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線E的焦點(diǎn)為F,過F的直線lE交于AB兩點(diǎn),與x軸交于點(diǎn).A為線段的中點(diǎn),則

A.9B.12C.18D.72

查看答案和解析>>

科目: 來源: 題型:

【題目】某工廠兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下通過日常監(jiān)控得知,生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為.

(1)從,生產(chǎn)線上各抽檢一件產(chǎn)品,若使得至少有一件合格的概率不低于,求的最小值.

(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為的值.

①已知,生產(chǎn)線的不合格產(chǎn)品返工后每件產(chǎn)品可分別挽回?fù)p失元和元。若從兩條生產(chǎn)線上各隨機(jī)抽檢件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線挽回的損失較多?

②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級分類后,每件分別獲利元、元、元,現(xiàn)從,生產(chǎn)線的最終合格品中各隨機(jī)抽取件進(jìn)行檢測,結(jié)果統(tǒng)計(jì)如下圖;用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為,求的分布列并估算該廠產(chǎn)量件時利潤的期望值.

查看答案和解析>>

科目: 來源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(Ⅰ)解不等式: ;

(Ⅱ)當(dāng)時,函數(shù)的圖象與軸圍成一個三角形,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】表示中的最大值,.已知函數(shù),

(1)設(shè),求函數(shù)上零點(diǎn)的個數(shù)

(2)試探討是否存在實(shí)數(shù),使得恒成立?若存在,的取值范圍若不存在,說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

(1)討論極值點(diǎn)的個數(shù);

(2)若有兩個極值點(diǎn),,且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知,是動點(diǎn),以為直徑的圓與圓內(nèi)切.

(1)求的軌跡的方程;

(2)設(shè)是圓軸的交點(diǎn),過點(diǎn)的直線與交于兩點(diǎn),直線交直線于點(diǎn),求證:三點(diǎn)共線.

查看答案和解析>>

科目: 來源: 題型:

【題目】某居民區(qū)有一個銀行網(wǎng)點(diǎn)(以下簡稱“網(wǎng)點(diǎn)”),網(wǎng)點(diǎn)開設(shè)了若干個服務(wù)窗口,每個窗口可以辦理的業(yè)務(wù)都相同,每工作日開始辦理業(yè)務(wù)的時間是8點(diǎn)30分,8點(diǎn)30分之前為等待時段.假設(shè)每位儲戶在等待時段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率都相等,且每位儲戶是否在該時段到網(wǎng)點(diǎn)相互獨(dú)立.根據(jù)歷史數(shù)據(jù),統(tǒng)計(jì)了各工作日在等待時段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲戶人數(shù),得到如圖所示的頻率分布直方圖:

(1)估計(jì)每工作日等待時段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的儲戶人數(shù)的平均值;

(2)假設(shè)網(wǎng)點(diǎn)共有1000名儲戶,將頻率視作概率,若不考慮新增儲戶的情況,解決以下問題:

①試求每位儲戶在等待時段到網(wǎng)點(diǎn)等待辦理業(yè)務(wù)的概率;

②儲戶都是按照進(jìn)入網(wǎng)點(diǎn)的先后順序,在等候人數(shù)最少的服務(wù)窗口排隊(duì)辦理業(yè)務(wù).記“每工作日上午8點(diǎn)30分時網(wǎng)點(diǎn)每個服務(wù)窗口的排隊(duì)人數(shù)(包括正在辦理業(yè)務(wù)的儲戶)都不超過3”為事件,要使事件的概率不小于0.75,則網(wǎng)點(diǎn)至少需開設(shè)多少個服務(wù)窗口?

參考數(shù)據(jù):;;

;.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在以為頂點(diǎn)的五面體中,面是邊長為3的菱形.

(1)求證:;

(2)若,,,,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案