科目: 來源: 題型:
【題目】已知f(x)=ax3+bx2+cx(a≠0)在x=±1時(shí)取得極值,且f(1)=-1.
(1)試求常數(shù)a、b、c的值;
(2)試判斷x=±1是函數(shù)的極小值還是極大值,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),(其中)的圖象與x軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最低點(diǎn)為.
(Ⅰ)求的解析式;
(Ⅱ)當(dāng),求的值域.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)組,如果數(shù)組滿足,且,其中,則稱為的“兄弟數(shù)組”.
(1)寫出數(shù)組的“兄弟數(shù)組”;
(2)若的“兄弟數(shù)組”是,試證明:成等差數(shù)列;
(3)若為偶數(shù),且的“兄弟數(shù)組”是,求證:.
查看答案和解析>>
科目: 來源: 題型:
【題目】某家電公司進(jìn)行關(guān)于消費(fèi)檔次的調(diào)查,根據(jù)家庭年均家電消費(fèi)額將消費(fèi)檔次分為4組:不超過3000元、超過3000元且不超過5000元、超過5000元且不超過10000元、超過10000元,從A、B兩市中各隨機(jī)抽取100個(gè)家庭,統(tǒng)計(jì)數(shù)據(jù)如下表所示:
消費(fèi) 檔次 | 不超過3000元 | 超過3000元 且不超過5000元 | 超過5000元 且不超過10000元 | 超過10000元 |
A市 | 20 | 50 | 20 | 10 |
B市 | 50 | 30 | 10 | 10 |
年均家電消費(fèi)額不超過5000元的家庭視為中低消費(fèi)家庭,超過5000元的視為中高消費(fèi)家庭.
(1)從A市的100個(gè)樣本中任選一個(gè)家庭,求此家庭屬于中低消費(fèi)家庭的概率;
(2)現(xiàn)從A、B兩市中各任選一個(gè)家庭,分別記為甲、乙,估計(jì)甲的消費(fèi)檔次不低于乙的消費(fèi)檔次的概率;
(3)以各消費(fèi)檔次的區(qū)間中點(diǎn)對應(yīng)的數(shù)值為該檔次的家庭年均家電消費(fèi)額,估計(jì)A、B兩市中,哪個(gè)市的家庭年均家電消費(fèi)額的方差較大(直接寫出結(jié)果,不必說明理由).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,PA⊥底面ABCD,BC∥AD,AB⊥BC,,,M是PD的中點(diǎn).
(1)求證:CM∥平面PAB;
(2)求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知的內(nèi)角A,B,C的對邊分別為a,b,c,且滿足.
(1)求角;
(2)若,___________________(從下列問題中任選一個(gè)作答,若選擇多個(gè)條件分別解答,則按選擇的第一個(gè)解答計(jì)分).
①的面積為,求的周長;
②的周長為21,求的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知下列命題:
①函數(shù)在上單調(diào)遞減,在上單調(diào)遞增;
②若函數(shù)在上有兩個(gè)零點(diǎn),則的取值范圍是;
③函數(shù)在上單調(diào)遞減;
④當(dāng)時(shí),函數(shù)的最大值為.
上述命題正確的是__________(填序號).
查看答案和解析>>
科目: 來源: 題型:
【題目】甲、乙、丙、丁四位生物學(xué)專家在篩選臨床抗病毒藥物,,,時(shí)做出如下預(yù)測:
甲說:和都有效;
乙說:和不可能同時(shí)有效;
丙說:有效;
丁說:和至少有一種有效.
臨床試驗(yàn)后證明,有且只有兩種藥物有效,且有且只有兩位專家的預(yù)測是正確的,由此可判斷有效的藥物是( )
A.和B.和C.和D.和
查看答案和解析>>
科目: 來源: 題型:
【題目】已知某單位甲、乙、丙三個(gè)部門的員工人數(shù)分別為24,16,16.現(xiàn)采用分層抽樣的方法從中抽取7人,進(jìn)行睡眠時(shí)間的調(diào)查.
(1)應(yīng)從甲、乙、丙三個(gè)部門的員工中分別抽取多少人?
(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,現(xiàn)從這7人中隨機(jī)抽取3人做進(jìn)一步的身體檢查.用X表示抽取的3人中睡眠充足的員工人數(shù),求隨機(jī)變量X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com