科目: 來源: 題型:
【題目】下列說法錯誤的是( )
A.“”是“”的充分不必要條件
B.命題“若,則”的逆否命題為:“若,則”
C.若為假命題,則,均為假命題
D.命題,使得,則,使得
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,已知點A1,A2,…,An,…B1,B2,…,Bn,…均在拋物線x=y2上,線段AnBn與x軸的交點為Hn.將△OA1B1,△H1A2B2,…,△HnAn+1Bn+1,…的面積分別記為S1,S2,…,Sn+1,….已知上述三角形均為等腰直角三角形,且它們的頂角分別為O,H1,…,Hn,….
(1)求S1和S2的值;
(2)證明:n≤sn≤n2.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示是一個上下底面均是邊長為2的正三角形的直三棱柱,且該直三棱柱的高為4,D為AB的中點,E為CC1的中點.
(1)求DE與平面ABC夾角的正弦值;
(2)求二面角A﹣A1D﹣E的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】若數(shù)列{an}滿足:對任意n∈N*,均有an=bn+cn成立,且{bn},{cn}都是等比數(shù)列,則稱(bn,cn)是數(shù)列{an}的一個等比拆分.
(1)若an=2n,且(bn,bn+1)是數(shù)列{an}的一個等比拆分,求{bn}的通項公式;
(2)設(shè)(bn,cn)是數(shù)列{an}的一個等比拆分,且記{bn},{cn}的公比分別為q1,q2;
①若{an}是公比為q的等比數(shù)列,求證:q1=q2=q;
②若a1=1,a2=2,q1q2=﹣1,且對任意n∈N*,an+13<anan+1an+2+an+2﹣an恒成立,求a3的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)且a≠1,函數(shù).
(1)判斷并證明f(x)和g(x)的奇偶性;
(2)求g(x)的值域;
(3)若x∈R,都有|f(x)|≥|g(x)|成立,求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓1(a>b>0)的左右焦點分別為F1F2,左右頂點分別為AB,上頂點為T,且△TF1F2為等邊三角形.
(1)求此橢圓的離心率e;
(2)若直線y=kx+m(k>0)與橢圓交與CD兩點(點D在x軸上方),且與線段F1F2及橢圓短軸分別交于點MN(其中MN不重合),且|CM|=|DN|.
①求k的值;
②設(shè)ADBC的斜率分別為k1,k2,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某工廠打算設(shè)計一種容積為2m3的密閉容器用于貯藏原料,容器的形狀是如圖所示的直四棱柱,其底面是邊長為x米的正方形,假設(shè)該容器的底面及側(cè)壁的厚度均可忽略不計.
(1)請你確定x的值,使得該容器的外表面積最小;
(2)若該容器全部由某種每平方米價格為100元的材料做成,且制作該容器僅需將購置的材料做成符合需要的矩形,這些矩形即是直四棱柱形容器的上下底面和側(cè)面(假設(shè)這一過程中產(chǎn)生的費用和材料損耗可忽略不計),再將這些上下底面和側(cè)面的邊緣進行焊接即可做成該容器,焊接費用是每米500元,試確定x的值,使得生產(chǎn)每個該種容器的成本(即原料購置成本+焊接費用)最低.
查看答案和解析>>
科目: 來源: 題型:
【題目】將正方體ABCD﹣A1B1C1D1沿三角形A1BC1所在平面削去一角可得到如圖所示的幾何體.
(1)連結(jié)BD,BD1,證明:平面BDD1⊥平面A1BC1;
(2)已知P,Q,R分別是正方形ABCDCDD1C1ADD1A1的中心(即對角線交點),證明:平面PQR∥平面A1BC1.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系xOy中,A的坐標為(2,0),B是第一象限內(nèi)的一點,以C為圓心的圓經(jīng)過OAB三點,且圓C在點A,B處的切線相交于P,若P的坐標為(4,2),則直線PB的方程為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com