相關(guān)習(xí)題
 0  266099  266107  266113  266117  266123  266125  266129  266135  266137  266143  266149  266153  266155  266159  266165  266167  266173  266177  266179  266183  266185  266189  266191  266193  266194  266195  266197  266198  266199  266201  266203  266207  266209  266213  266215  266219  266225  266227  266233  266237  266239  266243  266249  266255  266257  266263  266267  266269  266275  266279  266285  266293  266669 

科目: 來源: 題型:

【題目】已知拋物線,拋物線與圓的相交弦長為4.

1)求拋物線的標準方程;

2)點為拋物線的焦點,為拋物線上兩點,,若的面積為,且直線的斜率存在,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線,拋物線與圓的相交弦長為4.

1)求拋物線的標準方程;

2)點為拋物線的焦點,為拋物線上兩點,,若的面積為,且直線的斜率存在,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】某學(xué)校在學(xué)期結(jié)束,為了解家長對學(xué)校工作的滿意度,對兩個班的100位家長進行滿意度調(diào)查,調(diào)查結(jié)果如下:

非常滿意

滿意

合計

A

30

15

45

B

45

10

55

合計

75

25

100

1)根據(jù)表格判斷是否有的把握認為家長的滿意程度與所在班級有關(guān)系?

2)用分層抽樣的方法從非常滿意的家長中抽取5人進行問卷調(diào)查,并在這5人中隨機選出2人進行座談,求這2人都來自同一班級的概率?

附:

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖所示,我市某居民小區(qū)擬在邊長為1百米的正方形地塊上劃出一個三角形地塊種植草坪,兩個三角形地塊種植花卉,一個三角形地塊設(shè)計成水景噴泉,四周鋪設(shè)小路供居民平時休閑散步,點在邊上,點在邊上,記

1)當時,求花卉種植面積關(guān)于的函數(shù)表達式,并求的最小值;

2)考慮到小區(qū)道路的整體規(guī)劃,要求,請?zhí)骄?/span>是否為定值,若是,求出此定值,若不是,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】

已知函數(shù)fx=,其中a>0.

)若a=1,求曲線y=fx)在點(2f2))處的切線方程;

)若在區(qū)間上,fx>0恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】若函數(shù)在區(qū)間上, , , , 均可為一個三角形的三邊長,則稱函數(shù)三角形函數(shù).已知函數(shù)在區(qū)間上是三角形函數(shù),則實數(shù)的取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】某城市一社區(qū)接到有關(guān)部門的通知,對本社區(qū)居民用水量進行調(diào)研,通過抽樣調(diào)查的方法獲得了100戶居民某年的月均用水量(單位:t),通過分組整理數(shù)據(jù),得到數(shù)據(jù)的頻率分布直方圖如圖所示:

(Ⅰ)求圖中m的值;并估計該社區(qū)居民月均用水量的中位數(shù)和平均值.(保留3位小數(shù))

(Ⅱ)用此樣本頻率估計概率,若從該社區(qū)隨機抽查3戶居民的月均用水量,問恰有2戶超過的概率為多少?

(Ⅲ)若按月均用水量分成兩個區(qū)間用戶,按分層抽樣的方法抽取10戶,每戶出一人參加水價調(diào)整方案聽證會.并從這10人中隨機選取3人在會上進行陳述發(fā)言,設(shè)來自用水量在區(qū)間的人數(shù)為X,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).其中.

1)討論函數(shù)的單調(diào)性;

2)函數(shù)處存在極值-1,且時,恒成立,求實數(shù)的最大整數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓)的一個焦點與拋物線的焦點重合,且離心率為.

1)求橢圓的標準方程;

2)過焦點的直線與拋物線交于兩點,與橢圓交于,兩點,滿足,求直線的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,多面體中,平面平面,,四邊形為平行四邊形.

1)證明:;

2)若,求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案