科目: 來源: 題型:
【題目】“綠水青山就是金山銀山”,“建設(shè)美麗中國”已成為新時代中國特色社會主義生態(tài)文明建設(shè)的重要內(nèi)容,某班在一次研學(xué)旅行活動中,為了解某苗圃基地的柏樹幼苗生長情況,在這些樹苗中隨機抽取了120株測量高度(單位:),經(jīng)統(tǒng)計,樹苗的高度均在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖.據(jù)當(dāng)?shù)匕貥涿缟L規(guī)律,高度不低于的為優(yōu)質(zhì)樹苗.
(1)求圖中的值;
(2)已知所抽取的這120株樹苗來自于,兩個試驗區(qū),部分數(shù)據(jù)如下列聯(lián)表:
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計 |
將列聯(lián)表補充完整,并判斷是否有99.9%的把握認為優(yōu)質(zhì)樹苗與,兩個試驗區(qū)有關(guān)系,并說明理由;
(3)通過用分層抽樣方法從試驗區(qū)被選中的樹苗中抽取5株,若從這5株樹苗中隨機抽取2株,求優(yōu)質(zhì)樹苗和非優(yōu)質(zhì)樹苗各有1株的概率.
附:參考公式與參考數(shù)據(jù):
其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的是( )
A.可以預(yù)測,當(dāng)時,B.
C.變量、之間呈負相關(guān)關(guān)系D.該回歸直線必過點
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,,,且滿足.記點的軌跡為曲線.
(1)求的方程,并說明是什么曲線;
(2)若,是曲線上的動點,且直線過點,問在軸上是否存在定點,使得?若存在,請求出定點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】 已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時,求不等式f(x)≥3的解集;
(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】“綠水青山就是金山銀山”,“建設(shè)美麗中國”已成為新時代中國特色社會主義生態(tài)文明建設(shè)的重要內(nèi)容,某班在一次研學(xué)旅行活動中,為了解某苗圃基地的柏樹幼苗生長情況,在這些樹苗中隨機抽取了120株測量高度(單位:),經(jīng)統(tǒng)計,樹苗的高度均在區(qū)間內(nèi),將其按,,,,,分成6組,制成如圖所示的頻率分布直方圖.據(jù)當(dāng)?shù)匕貥涿缟L規(guī)律,高度不低于的為優(yōu)質(zhì)樹苗.
(1)求圖中的值;
(2)已知所抽取的這120株樹苗來自于,兩個試驗區(qū),部分數(shù)據(jù)如列聯(lián)表:
試驗區(qū) | 試驗區(qū) | 合計 | |
優(yōu)質(zhì)樹苗 | 20 | ||
非優(yōu)質(zhì)樹苗 | 60 | ||
合計 |
將列聯(lián)表補充完整,并判斷是否有99.9%的把握認為優(yōu)質(zhì)樹苗與,兩個試驗區(qū)有關(guān)系,并說明理由;
(3)用樣本估計總體,若從這批樹苗中隨機抽取4株,其中優(yōu)質(zhì)樹苗的株數(shù)為,求的分布列和數(shù)學(xué)期望.
附:參考公式與參考數(shù)據(jù):,其中
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知變量、之間的線性回歸方程為,且變量、之間的一-組相關(guān)數(shù)據(jù)如下表所示,則下列說法錯誤的是( )
A.可以預(yù)測,當(dāng)時,B.
C.變量之間呈負相關(guān)關(guān)系D.該回歸直線必過點
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為:,過點的直線的參數(shù)方程為(為參數(shù)).
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于、兩點,求的值,并求定點到兩點的距離之積.
查看答案和解析>>
科目: 來源: 題型:
【題目】橢圓的右焦點為,且短軸長為,離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點為橢圓與軸正半軸的交點,是否存在直線,使得交橢圓于兩點,且恰是的垂心?若存在,求的方程;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com