相關(guān)習(xí)題
 0  265726  265734  265740  265744  265750  265752  265756  265762  265764  265770  265776  265780  265782  265786  265792  265794  265800  265804  265806  265810  265812  265816  265818  265820  265821  265822  265824  265825  265826  265828  265830  265834  265836  265840  265842  265846  265852  265854  265860  265864  265866  265870  265876  265882  265884  265890  265894  265896  265902  265906  265912  265920  266669 

科目: 來源: 題型:

【題目】設(shè)函數(shù),且(其中e是自然對數(shù)的底數(shù)).

(Ⅰ)若,求的單調(diào)區(qū)間;

(Ⅱ)若,求證:

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率為,,分別是橢圓的左右焦點,過點的直線交橢圓于兩點,且的周長為12

(Ⅰ)求橢圓的方程

(Ⅱ)過點作斜率為的直線與橢圓交于兩點,試判斷在軸上是否存在點,使得是以為底邊的等腰三角形若存在,求點橫坐標(biāo)的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】高鐵、移動支付、網(wǎng)購與共享單車被稱為中國的新四大發(fā)明,為了解永安共享單車在淮南市的使用情況,永安公司調(diào)查了100輛共享單車每天使用時間的情況,得到了如圖所示的頻率分布直方圖.

(Ⅰ)求圖中的值;

(Ⅱ)現(xiàn)在用分層抽樣的方法從前3組中隨機抽取8輛永安共享單車,將該樣本看成一個總體,從中隨機抽取2輛,求其中恰有1輛的使用時間不低于50分鐘的概率;

(Ⅲ)為進(jìn)一步了解淮南市對永安共享單車的使用情況,永安公司隨機抽取了200人進(jìn)行調(diào)查問卷分析,得到如下2×2列聯(lián)表:

經(jīng)常使用

偶爾使用或不用

合計

男性

50

100

女性

40

合計

200

完成上述2×2列聯(lián)表,并根據(jù)表中的數(shù)據(jù)判斷是否有85%的把握認(rèn)為淮南市使用永安共享單車的情況與性別有關(guān)?

附:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目: 來源: 題型:

【題目】已知表示不小于的最小整數(shù),例如.

1)設(shè),,,求實數(shù)的取值范圍;

2)設(shè),在區(qū)間上的值域為,集合中元素的個數(shù)為,求證:

3)設(shè)),,若對于,都有,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知拋物線,為拋物線上的點,若直線經(jīng)過點且斜率為,則稱直線為點的“特征直線”.設(shè)、為方程)的兩個實根,記.

1)求點的“特征直線”的方程;

2)已知點在拋物線上,點的“特征直線”與雙曲線經(jīng)過二、四象限的漸進(jìn)線垂直,且與軸的交于點,點為線段上的點.求證:

3)已知、是拋物線上異于原點的兩個不同的點,點的“特征直線”分別為、,直線、相交于點,且與軸分別交于點、.求證:點在線段上的充要條件為(其中為點的橫坐標(biāo)).

查看答案和解析>>

科目: 來源: 題型:

【題目】記點到圖形上每一個點的距離的最小值稱為點到圖形的距離,那么平面內(nèi)到定圓的距離與到定點的距離相等的點的軌跡不可能是

A.B.橢圓C.雙曲線的一支D.直線

查看答案和解析>>

科目: 來源: 題型:

【題目】已知各項均為正數(shù)的數(shù)列{an}的前n項和Sn滿足S1>1,且(nN*)

(1){an}的通項公式;

(2)設(shè)數(shù)列滿足,Tn為數(shù)列{bn}的前n項和,求Tn;

(3)設(shè)*(為正整數(shù)),問是否存在正整數(shù),使得當(dāng)任意正整數(shù)n>N時恒有Cn>2015成立?若存在,請求出正整數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,求證上是單調(diào)遞減函數(shù);

2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;

3)討論函數(shù)的零點個數(shù).

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓,設(shè)是橢圓上任一點,從原點向圓作兩條切線,切點分別為

(1)若直線互相垂直,且點在第一象限內(nèi),求點的坐標(biāo);

(2)若直線的斜率都存在,并記為,求證:

查看答案和解析>>

科目: 來源: 題型:

【題目】某種游戲中,黑、黃兩個電子狗從棱長為1的正方體ABCD-A1B1C1D1的頂點A出發(fā)沿棱向前爬行,每爬完一條棱稱為爬完一段電子狗爬行的路線是AA1A1D1 ,黃電子狗爬行的路線是ABBB1 ,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線其中i是正整數(shù)).設(shè)黑電子狗爬完2015段、黃電子狗爬完2014段后各自停止在正方體的某個頂點處,這時黑、黃電子狗間的距離是

查看答案和解析>>

同步練習(xí)冊答案