相關習題
 0  265345  265353  265359  265363  265369  265371  265375  265381  265383  265389  265395  265399  265401  265405  265411  265413  265419  265423  265425  265429  265431  265435  265437  265439  265440  265441  265443  265444  265445  265447  265449  265453  265455  265459  265461  265465  265471  265473  265479  265483  265485  265489  265495  265501  265503  265509  265513  265515  265521  265525  265531  265539  266669 

科目: 來源: 題型:

【題目】如圖,已知拋物線,設直線經(jīng)過點且與拋物線相交于兩點,拋物線、兩點處的切線相交于點,直線,分別與軸交于、兩點.

1)求點的軌跡方程

2)當點不在軸上時,記的面積為,的面積為,求的最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知四棱錐,平面⊥平面是以為斜邊的等腰直角三角形,,的中點.

1)證明:;

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,已知正四面體的棱長為2,是棱上一動點,若,則線段的長度的最小值是______

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)證明:;

2)若恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓的離心率e滿足,以坐標原點為圓心,橢圓C的長軸長為半徑的圓與直線相切.

1)求橢圓C的方程;

2)過點P(0,1)的動直線(直線的斜率存在)與橢圓C相交于A,B兩點,問在y軸上是否存在與點P不同的定點Q,使得恒成立?若存在,求出定點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】某人玩擲正方體骰子走跳棋的游戲,已知骰子每面朝上的概率都是,棋盤上標有第0站,第1站,第2站,……,第100.一枚棋子開始在第0站,選手每擲一次骰子,棋子向前跳動一次,若擲出朝上的點數(shù)為12,棋子向前跳兩站;若擲出其余點數(shù),則棋子向前跳一站,直到跳到第99站或第100站時,游戲結(jié)束;設游戲過程中棋子出現(xiàn)在第站的概率為.

1)當游戲開始時,若拋擲均勻骰子3次后,求棋子所走站數(shù)之和X的分布列與數(shù)學期望;

2)證明:;

3)若最終棋子落在第99站,則記選手落敗,若最終棋子落在第100站,則記選手獲勝,請分析這個游戲是否公平.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,如圖放置的邊長為2的正方形ABCD沿軸滾動(無滑動滾動),點D恰好經(jīng)過坐標原點,設頂點的軌跡方程是,則對函數(shù)的判斷正確的是(

A.函數(shù)上有兩個零點

B.函數(shù)是偶函數(shù)

C.函數(shù)上單調(diào)遞增

D.對任意的,都有

查看答案和解析>>

科目: 來源: 題型:

【題目】“雜交水稻之父”袁隆平一生致力于雜交水稻技術的研究、應用與推廣,發(fā)明了“三系法”秈型雜交水稻,成功研究出“兩系法”雜交水稻,創(chuàng)建了超級雜交稻技術體系,為我國糧食安全、農(nóng)業(yè)科學發(fā)展和世界糧食供給做出了杰出貢獻;某雜交水稻種植研究所調(diào)查某地水稻的株高,得出株高(單位:cm)服從正態(tài)分布,其密度曲線函數(shù)為,則下列說法正確的是(

A.該地水稻的平均株高為100cm

B.該地水稻株高的方差為10

C.隨機測量一株水稻,其株高在120cm以上的概率比株高在70cm以下的概率大

D.隨機測量一株水稻,其株高在(80,90)和在(100110)(單位:cm)的概率一樣大

查看答案和解析>>

科目: 來源: 題型:

【題目】在脫貧攻堅中,某市教育局定點幫扶前進村戶貧困戶.駐村工作隊對這戶村民的貧困程度以及家庭平均受教育程度進行了調(diào)査,并將該村貧困戶按貧困程度分為“絕對貧困戶”與“相對貧困戶”,同時按家庭平均受教育程度分為“家庭平均受教育年限年”與“家庭平均受教育年限年”,具體調(diào)査結(jié)果如下表所示:

平均受教育年限

平均受教育年限

總計

絕對貧困戶

10

40

50

相對貧困戶

20

30

50

總計

30

70

100

1)為了參加扶貧辦公室舉辦的貧困戶“談心談話”活動,現(xiàn)通過分層抽樣從“家庭平均受教育年限年”的戶貧困戶中任意抽取戶,再從所抽取的戶中隨機抽取戶參加“談心談話”活動,求至少有戶是絕對貧困戶的概率;

2)根據(jù)上述表格判斷:是否有的把握認為貧困程度與家庭平均受教育程度有關?

參考公式:

參考數(shù)據(jù):

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,國時期吳國的數(shù)學家趙爽創(chuàng)制了一幅“勾股圓方圖”,用數(shù)形結(jié)合的方法給出了勾股定理的詳細證明如圖所示的“勾股圓方圖”中,四個相同的直角三角形與中間的小正方形拼成一個大正方形若直角三角形中較小的銳角,現(xiàn)在向該大止方形區(qū)域內(nèi)隨機地投擲一枚飛鏢,則飛鏢落在陰影部分的概率是  

A. B. C. D.

查看答案和解析>>

同步練習冊答案