相關(guān)習題
 0  265188  265196  265202  265206  265212  265214  265218  265224  265226  265232  265238  265242  265244  265248  265254  265256  265262  265266  265268  265272  265274  265278  265280  265282  265283  265284  265286  265287  265288  265290  265292  265296  265298  265302  265304  265308  265314  265316  265322  265326  265328  265332  265338  265344  265346  265352  265356  265358  265364  265368  265374  265382  266669 

科目: 來源: 題型:

【題目】已知橢圓的左右焦點分別為,離心率是,P為橢圓上的動點.取最大值時,的面積是

1)求橢圓的方程:

2)若動直線l與橢圓E交于A,B兩點,且恒有,是否存在一個以原點O為圓心的定圓C,使得動直線l始終與定圓C相切?若存在,求圓C的方程,若不存在,請說明理由

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱柱中,已知底面為等腰梯形,M,N分別是棱的中點

1)證明:直線平面;

2)若平面,且,求經(jīng)過點A,MN的平面與平面所成二面角的正弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】新生兒某疾病要接種三次疫苗免疫(即0、1、6月齡),假設(shè)每次接種之間互不影響,每人每次接種成功的概率相等為了解新生兒該疾病疫苗接種劑量與接種成功之間的關(guān)系,現(xiàn)進行了兩種接種方案的臨床試驗:10μg/次劑量組與20μg/次劑量組,試驗結(jié)果如下:

接種成功

接種不成功

總計(人)

10μg/次劑量組

900

100

1000

20μg/次劑量組

973

27

1000

總計(人)

1873

127

2000

1)根據(jù)數(shù)據(jù)說明哪種方案接種效果好?并判斷能否有99.9%的把握認為該疾病疫苗接種成功與兩種接種方案有關(guān)?

2)以頻率代替概率,若選用接種效果好的方案,參與該試驗的1000人的成功人數(shù)比此劑量只接種一次的成功人數(shù)平均提高多少人.

參考公式:,其中

參考附表:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目: 來源: 題型:

【題目】下面給出有關(guān)的四個論斷:①;②;③;④.以其中的三個論斷作為條件,余下的一個論斷作為結(jié)論,寫出一個正確的命題:若______,則_______(用序號表示)并給出證明過程:

查看答案和解析>>

科目: 來源: 題型:

【題目】向體積為1的正方體密閉容器內(nèi)注入體積為的液體,旋轉(zhuǎn)容器,下列說法正確的是(

A.時,容器被液面分割而成的兩個幾何體完全相同

B.,液面都可以成正三角形形狀

C.當液面與正方體的某條體對角線垂直時,液面面積的最大值為

D.當液面恰好經(jīng)過正方體的某條體對角線時,液面邊界周長的最小值為

查看答案和解析>>

科目: 來源: 題型:

【題目】已知動點在雙曲線上,雙曲線的左、右焦點分別為、,下列結(jié)論正確的是(

A.的離心率為

B.的漸近線方程為

C.動點到兩條漸近線的距離之積為定值

D.當動點在雙曲線的左支上時,的最大值為

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知曲線的參數(shù)方程為:,(為參數(shù)),以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,直線l的極坐標方程為

1)求曲線和直線l的直角坐標方程;

2)若點在曲線上,且點到直線l的距離最小,求點的坐標.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

(1)若曲線在點處的切線l過點,求實數(shù)的值;

2)若函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的右焦點為,上頂點為,,點在橢圓.

1)求橢圓的標準方程;

2)動直線l與橢圓相交于、兩點,與軸相交于點,與軸的正半軸相交于點,為線段的中點,若為定值,請判斷直線l是否過定點,求實數(shù)的值,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】扶貧幫困是中華民族的傳統(tǒng)美德,某大型企業(yè)為幫扶貧困職工,設(shè)立扶貧幫困基金,采用如下方式進行一次募捐:在不透明的箱子中放入大小均相同的白球六個,紅球三個,每位獻愛心的參與者投幣100元有一次摸獎機會,一次性從箱中摸球三個(摸完球后將球放回),若有一個紅球,獎金20元,兩個紅球獎金40元,三個全為紅球獎金200.

1)求一位獻愛心參與者不能獲獎的概率;

2)若該次募捐有300位獻愛心參與者,求此次募捐所得善款的數(shù)學期望.

查看答案和解析>>

同步練習冊答案