科目: 來源: 題型:
【題目】已知函數(shù)f(x)=axex,g(x)=x2+2x+b,若曲線y=f(x)與曲線y=g(x)都過點P(1,c).且在點P處有相同的切線l.
(Ⅰ)求切線l的方程;
(Ⅱ)若關(guān)于x的不等式k[ef(x)]≥g(x)對任意x∈[﹣1,+∞)恒成立,求實數(shù)k的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點A(0,2),B為拋物線x2=2y﹣2上任意一點,且B為AC的中點,設(shè)動點C的軌跡為曲線E.
(1)求曲線E的方程;
(2)是否存在斜率為1的直線l交曲線E于M、N兩點,使得△MAN為以MN為底邊的等腰三角形?若存在,請求出l的方程;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】四棱錐P﹣ABCD中,AB∥CD,AB⊥BC,AB=BC=1,PA=CD=2,PA⊥底面ABCD,E在PB上.
(1)證明:AC⊥PD;
(2)若PE=2BE,求三棱錐P﹣ACE的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著新高考改革的不斷深入,高中學生生涯規(guī)劃越來越受到社會的關(guān)注.一些高中已經(jīng)開始嘗試開設(shè)學生生涯規(guī)劃選修課程,并取得了一定的成果.如表為某高中為了調(diào)查學生成績與選修生涯規(guī)劃課程的關(guān)系,隨機抽取50名學生的統(tǒng)計數(shù)據(jù).
成績優(yōu)秀 | 成績不夠優(yōu)秀 | 總計 | |
選修生涯規(guī)劃課 | 15 | 10 | 25 |
不選修生涯規(guī)劃課 | 6 | 19 | 25 |
總計 | 21 | 29 | 50 |
(1)根據(jù)列聯(lián)表運用獨立性檢驗的思想方法能否有99%的把握認為“學生的成績是否優(yōu)秀與選修生涯規(guī)劃課有關(guān)”,并說明理由;
(2)現(xiàn)用分層抽樣的方法在選修生涯規(guī)劃課的成績優(yōu)秀和成績不夠優(yōu)秀的學生中隨機抽取5名學生作為代表,從5名學生代表中再任選2名學生繼續(xù)調(diào)查,求這2名學生成績至少有1人優(yōu)秀的概率.
參考附表:
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
參考公式,其中n=a+b+c+d.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2a=2bcosC+csinB.
(Ⅰ)求tanB;
(Ⅱ)若C,△ABC的面積為6,求BC.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項和Sn滿足4Sn=an2+2an,n∈N*.設(shè)bn=(﹣1)nanan+1,Tn為數(shù)列{bn}的前n項和,則T2n=_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】長方、塹堵、陽馬、鱉臑這些名詞出自中國古代數(shù)學名著《九章算術(shù)商功》.其中陽馬和鱉臑是我國古代對一些特殊錐體的稱呼.取一長方,如圖長方體ABCD﹣A1B1C1D1,按平面ABC1D1斜切一分為二,得到兩個一模一樣的三棱柱.稱該三梭柱為塹堵,再沿塹堵的一頂點與相對的棱剖開,得四棱錐和三棱錐各一個,其中以矩形為底另有一棱與底面垂直的四梭錐D1﹣ABCD稱為陽馬,余下的三棱錐D1﹣BCC1是由四個直角三角形組成的四面體稱為鱉臑.已知長方體ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,按以上操作得到陽馬.則該陽馬的最長棱長為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】袋子中有四張卡片,分別寫有“國”、“富”、“民”、“強”四個字,有放回地從中任取一張卡片,將三次抽取后“國”“富”兩個字都取到記為事件A,用隨機模擬的方法估計事件A發(fā)生的概率,利用電腦隨機產(chǎn)生整數(shù)0,1,2,3四個隨機數(shù),分別代表“國”、“富”、“民”、“強”這四個字,以每三個隨機數(shù)為一組,表示取卡片三次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下18組隨機數(shù):
231 | 232 | 210 | 023 | 122 | 021 | 321 | 220 | 031 |
231 | 103 | 133 | 132 | 001 | 320 | 123 | 130 | 233 |
由此可以估計事件A發(fā)生的概率為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】眾所周知的“太極圖”,其形狀如對稱的陰陽兩魚互抱在一起,也被稱為“陰陽魚太極圖”.如圖是放在平面直角坐標系中的“太極圖”.整個圖形是一個圓形.其中黑色陰影區(qū)域在y軸右側(cè)部分的邊界為一個半圓,給出以下命題:
①在太極圖中隨機取一點,此點取自黑色陰影部分的概率是
②當時,直線y=ax+2a與白色部分有公共點;
③黑色陰影部分(包括黑白交界處)中一點(x,y),則x+y的最大值為2;
④設(shè)點P(﹣2,b),點Q在此太極圖上,使得∠OPQ=45°,b的范圍是[﹣2,2].
其中所有正確結(jié)論的序號是( )
A.①④B.①③C.②④D.①②
查看答案和解析>>
科目: 來源: 題型:
【題目】已知動圓與軸相切于點,過點,分別作動圓異于軸的兩切線,設(shè)兩切線相交于,點的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)過的直線與曲線相交于不同兩點,若曲線上存在點,使得成立,求實數(shù)的范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com