科目: 來源: 題型:
【題目】已知拋物線的頂點是橢圓的中心,焦點與該橢圓的右焦點重合.
(1)求拋物線的方程;
(2)已知動直線過點,交拋物線于,兩點,坐標(biāo)原點為的中點,求證;
(3)在(2)的條件下,是否存在垂直于軸的直線被以為直徑的圓所截得的弦長恒為定值?如果存在,求出的方程;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知為實數(shù),函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最小值;
(Ⅲ)若,求使方程有唯一解的的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,a,b,c分別為內(nèi)角A,B,C所對邊的邊長,且C=,a+b=λc(其中λ>1).
(1)若λ=時,證明:△ABC為直角三角形;
(2)若·=λ2,且c=3,求λ的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】若數(shù)列與函數(shù)滿足:①的任意兩項均不相等,且的定義域為;②數(shù)列的前的項的和對任意的都成立,則稱與具有“共生關(guān)系”.
(1)若,試寫出一個與數(shù)列具有“共生關(guān)系”的函數(shù)的解析式;
(2)若與數(shù)列具有“共生關(guān)系”,求實數(shù)對所構(gòu)成的集合,并寫出關(guān)于,,的表達(dá)式;
(3)若,求證:“存在每項都是正數(shù)的無窮等差數(shù)列,使得與具有‘共生關(guān)系’”的充要條件是“點在射線上”.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點,分別是橢圓右頂點與上頂點,坐標(biāo)原點到直線的距離為,且點是圓的圓心,動直線與橢圓交于,兩點.
(1)求橢圓的方程;
(2)若點在線段上,,且當(dāng)取最小值時直線與圓相切,求的值;
(3)若直線與圓分別交于,兩點,點在線段上,且,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】某公園計劃在矩形空地上建造一個扇形花園如圖①所示,矩形的邊與邊的長分別為48米與40米,扇形的圓心為中點,扇形的圓弧端點,分別在與上,圓弧的中點在上.
(1)求扇形花園的面積(精確到1平方米);
(2)若在扇形花園內(nèi)開辟出一個矩形區(qū)域為花卉展覽區(qū).如圖②所示,矩形的四條邊與矩形的對應(yīng)邊平行,點,分別在,上,點,在扇形的弧上.某同學(xué)猜想:當(dāng)矩形面積最大時,兩矩形與的形狀恰好相同(即長與寬之比相同),試求花卉展覽區(qū)面積的最大值,并判斷上述猜想是否正確(請說明理由).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線平面,垂足為,正四面體的棱長為2,,分別是直線和平面上的動點,且,則下列判斷:①點到棱中點的距離的最大值為;②正四面體在平面上的射影面積的最大值為.其中正確的說法是( ).
A.①②都正確B.①②都錯誤C.①正確,②錯誤D.①錯誤,②正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com