相關(guān)習題
 0  265026  265034  265040  265044  265050  265052  265056  265062  265064  265070  265076  265080  265082  265086  265092  265094  265100  265104  265106  265110  265112  265116  265118  265120  265121  265122  265124  265125  265126  265128  265130  265134  265136  265140  265142  265146  265152  265154  265160  265164  265166  265170  265176  265182  265184  265190  265194  265196  265202  265206  265212  265220  266669 

科目: 來源: 題型:

【題目】在正方體ABCDA1B1C1D1中,E,F分別為B1C1,C1D1的中點,點P是上底面A1B1C1D1內(nèi)一點,且AP∥平面EFDB,則cosAPA1的最小值是(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】在直角坐標系xOy中曲線C的參數(shù)方程為為參數(shù)).以坐標原點為極點,x軸正半軸為極軸建立極坐標系,已知直線lA,B兩點,且這兩點的極坐標分別為.

I)求C的普通方程和的直角坐標方程;

II)若M為曲線C上一動點,求點M到直線l的最小距離.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)

I)討論函數(shù)的單調(diào)性;

II)當時,證明(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在三棱錐中,是邊長為2的正三角形,是等腰直角三角形,.

I)證明:平面平面ABC;

II)點EBD上,若平面ACE把三棱錐分成體積相等的兩部分,求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網(wǎng)上在線學習,為了研究學生在網(wǎng)上學習的情況,某學校在網(wǎng)上隨機抽取120名學生對線上教育進行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認為對線上教育是否滿意與性別有關(guān);

滿意

不滿意

總計

男生

女生

合計

120

2)從被調(diào)查中對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經(jīng)驗介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目: 來源: 題型:

【題目】已知橢圓C分別是其左、右焦點,過的直線l與橢圓C交于A,B兩點,且橢圓C的離心率為,的內(nèi)切圓面積為.

I)求橢圓C的方程;

II)若時,求直線l的方程

查看答案和解析>>

科目: 來源: 題型:

【題目】給出以下四個命題:

①數(shù)列為等差數(shù)列的充要條件是其通項公式為n的一次函數(shù).

②在面積為S的邊AB上任取一點P,則的面積大于的概率為.

③將多項式分解因式得,則.

④若那么由,那么由以及x軸所圍成的圖形一定在x軸下方.

其中正確命題的序號為_____________(把所有正確命題的序號都填上)

查看答案和解析>>

科目: 來源: 題型:

【題目】2020年春節(jié)突如其來的新型冠狀病毒肺炎在湖北爆發(fā),一方有難八方支援,全國各地的白衣天使走上戰(zhàn)場的第一線,某醫(yī)院抽調(diào)甲、乙兩名醫(yī)生,抽調(diào)、三名護士支援武漢第一醫(yī)院與第二醫(yī)院,參加武漢疫情狙擊戰(zhàn)其中選一名護士與一名醫(yī)生去第一醫(yī)院,其它都在第二醫(yī)院工作,則醫(yī)生甲和護士被選在第一醫(yī)院工作的概率為(

A.B.C.D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù).

1)若.證明函數(shù)有且僅有兩個零點;

2)若函數(shù)存在兩個零點,證明:.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知矩形,中點,將折起,連結(jié).

1)當時,求證:;

2)當時,求二面角的余弦值.

查看答案和解析>>

同步練習冊答案