科目: 來源: 題型:
【題目】為了貫徹落實(shí)黨中央對新冠肺炎疫情防控工作的部署和要求,堅(jiān)決防范疫情向校園蔓延,切實(shí)保障廣大師生身體健康和生命的安全,教育主管部門決定通過電視頻道、網(wǎng)絡(luò)平臺(tái)等多種方式實(shí)施線上教育教學(xué)工作.為了了解學(xué)生和家長對網(wǎng)課授課方式的滿意度,從經(jīng)濟(jì)不發(fā)達(dá)的A城市和經(jīng)濟(jì)發(fā)達(dá)的B城市分別隨機(jī)調(diào)查了20個(gè)用戶,得到了一個(gè)用戶滿意度評(píng)分的樣本,并繪制出莖葉圖如下:
若評(píng)分不低于80分,則認(rèn)為該用戶對此授課方式“認(rèn)可”,否則認(rèn)為該用戶對此授課方式“不認(rèn)可”.以該樣本中A,B城市的用戶對此授課方式“認(rèn)可”的頻率分別作為A,B城市用戶對此授課方式“認(rèn)可”的概率.現(xiàn)從A城市和B城市的所有用戶中分別隨機(jī)抽取2個(gè)用戶,用表示這4個(gè)用戶中對此授課方式“認(rèn)可”的用戶個(gè)數(shù),則__________;用表示從A城市隨機(jī)抽取2個(gè)用戶中對此授課方式“認(rèn)可”的用戶個(gè)數(shù),則的數(shù)學(xué)期望為_________ .
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,點(diǎn),()在曲線C:上,直線l過點(diǎn)且與垂直,垂足為P.
(Ⅰ)當(dāng)時(shí),求在直角坐標(biāo)系下點(diǎn)P坐標(biāo)和l的方程;
(Ⅱ)當(dāng)M在C上運(yùn)動(dòng)且P在線段上時(shí),求點(diǎn)P在極坐標(biāo)系下的軌跡方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若存在極值,求實(shí)數(shù)a的取值范圍;
(2)設(shè),設(shè)是定義在上的函數(shù).
(ⅰ)證明:在上為單調(diào)遞增函數(shù)(是的導(dǎo)函數(shù));
(ⅱ)討論的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,過點(diǎn)的直線l與拋物線交于A,B兩點(diǎn),以AB為直徑作圓,記為,與拋物線C的準(zhǔn)線始終相切.
(1)求拋物線C的方程;
(2)過圓心M作x軸垂線與拋物線相交于點(diǎn)N,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)若點(diǎn)是曲線上的動(dòng)點(diǎn),求到直線距離的最小值,并求出此時(shí)點(diǎn)坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=axlnx﹣x2﹣ax+1(a∈R)在定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(1)求實(shí)數(shù)a的取值范圍;
(2)設(shè)兩個(gè)極值點(diǎn)分別為x1,x2,x1<x2,證明:f(x1)+f(x2)<2﹣x12+x22.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓C:的離心率為,與坐標(biāo)軸分別交于A,B兩點(diǎn),且經(jīng)過點(diǎn)Q(,1).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若P(m,n)為橢圓C外一動(dòng)點(diǎn),過點(diǎn)P作橢圓C的兩條互相垂直的切線l1、l2,求動(dòng)點(diǎn)P的軌跡方程,并求△ABP面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】2016年春節(jié)期間全國流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個(gè),產(chǎn)生的手氣紅包頻數(shù)分布表如表:
(I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計(jì)手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(Ⅲ)在這50個(gè)紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區(qū)間[21,25]內(nèi)為最佳運(yùn)氣手,求搶得紅包的某人恰好是最佳運(yùn)氣手的概率;
(ii)隨機(jī)抽取手氣紅包金額在[1,5)∪[﹣21,25]內(nèi)的兩名幸運(yùn)者,設(shè)其手氣金額分別為m,n,求事件“|m﹣n|>16”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com