科目: 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對四件參賽作品只評一件一等獎,在評獎揭曉前,甲,乙,丙,丁四位同學(xué)對這四件參賽作品預(yù)測如下:
甲說:“是或
作品獲得一等獎”; 乙說:“
作品獲得一等獎”;
丙說:“ 兩件作品未獲得一等獎”; 丁說:“是
作品獲得一等獎”.
評獎揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是_________.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程
(
為參數(shù)),直線
的參數(shù)方程
(
為參數(shù)).
(1)求曲線在直角坐標(biāo)系中的普通方程;
(2)以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,當(dāng)曲線
截直線
所得線段的中點(diǎn)極坐標(biāo)為
時,求直線
的傾斜角.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓
過點(diǎn)
,且離心率
.
(1)求橢圓的方程;
(2)直線的斜率為
,直線
與橢圓
交于
、
兩點(diǎn),求
的面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知正四棱錐的底面邊長和高都為2.現(xiàn)從該棱錐的5個頂點(diǎn)中隨機(jī)選取3個點(diǎn)構(gòu)成三角形,設(shè)隨機(jī)變量
表示所得三角形的面積.
(1)求概率的值;
(2)求隨機(jī)變量的概率分布及其數(shù)學(xué)期望
.
查看答案和解析>>
科目: 來源: 題型:
【題目】某班主任對全班30名男生進(jìn)行了作業(yè)量多少的調(diào)查,數(shù)據(jù)如下表:
認(rèn)為作業(yè)多 | 認(rèn)為作業(yè)不多 | 總計(jì) | |
喜歡玩電腦游戲 | 12 | 8 | 20 |
不喜歡玩電腦游戲 | 2 | 8 | 10 |
總計(jì) | 14 | 16 | 30 |
該班主任據(jù)此推斷男生認(rèn)為作業(yè)多與喜歡玩電腦游戲有關(guān)系,則這種推斷犯錯誤的概率不超過________.
附表及公式:
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2=.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(1)若當(dāng)時,
取得極值,求
的值,并求
的單調(diào)區(qū)間.
(2)若存在兩個極值點(diǎn)
,求
的取值范圍,并證明:
.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知橢圓:
的離心率為
.點(diǎn)
在橢圓
上,點(diǎn)
,
,
的面積為
,
為坐標(biāo)原點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線交橢圓
于
,
兩點(diǎn),直線
的斜率為
,直線
的斜率為
,且
,證明:
的面積是定值,并求此定值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,三棱柱中,
側(cè)面
,已知
,
,
,點(diǎn)E是棱
的中點(diǎn).
(1)求證:平面ABC;
(2)在棱CA上是否存在一點(diǎn)M,使得EM與平面所成角的正弦值為
,若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】為迎接“五一國際勞動節(jié)”,某商場規(guī)定購買超過6000元商品的顧客可以參與抽獎活動現(xiàn)有甲品牌和乙品牌的掃地機(jī)器人作為獎品,從這兩種品牌的掃地機(jī)器人中各隨機(jī)抽取6臺檢測它們充滿電后的工作時長相關(guān)數(shù)據(jù)見下表(工作時長單位:分)
機(jī)器序號 | 1 | 2 | 3 | 4 | 5 | 6 |
甲品牌工作時長/分 | 220 | 180 | 210 | 220 | 200 | 230 |
乙品牌工作時長/分 | 200 | 190 | 240 | 230 | 220 | 210 |
(1)根據(jù)所提供的數(shù)據(jù),計(jì)算抽取的甲品牌的掃地機(jī)器人充滿電后工作時長的平均數(shù)與方差;
(2)從乙品牌被抽取的6臺掃地機(jī)器人中隨機(jī)抽出3臺掃地機(jī)器人,記抽出的掃地機(jī)器人充滿電后工作時長不低于220分鐘的臺數(shù)為,求
的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,CM,CN為某公園景觀湖胖的兩條木棧道,∠MCN=120°,現(xiàn)擬在兩條木棧道的A,B處設(shè)置觀景臺,記BC=a,AC=b,AB=c(單位:百米)
(1)若a,b,c成等差數(shù)列,且公差為4,求b的值;
(2)已知AB=12,記∠ABC=θ,試用θ表示觀景路線A-C-B的長,并求觀景路線A-C-B長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com