科目: 來(lái)源: 題型:
【題目】各項(xiàng)均為非負(fù)整數(shù)的數(shù)列同時(shí)滿足下列條件:
① ;② ;③是的因數(shù)().
(Ⅰ)當(dāng)時(shí),寫出數(shù)列的前五項(xiàng);
(Ⅱ)若數(shù)列的前三項(xiàng)互不相等,且時(shí), 為常數(shù),求的值;
(Ⅲ)求證:對(duì)任意正整數(shù),存在正整數(shù),使得時(shí), 為常數(shù).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)為F.
(1)求點(diǎn)F的坐標(biāo)和橢圓C的離心率;
(2)直線過(guò)點(diǎn)F,且與橢圓C交于P,Q兩點(diǎn),如果點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為,判斷直線是否經(jīng)過(guò)x軸上的定點(diǎn),如果經(jīng)過(guò),求出該定點(diǎn)坐標(biāo);如果不經(jīng)過(guò),說(shuō)明理由.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知函數(shù).
(I)若曲線存在斜率為-1的切線,求實(shí)數(shù)a的取值范圍;
(II)求的單調(diào)區(qū)間;
(III)設(shè)函數(shù),求證:當(dāng)時(shí), 在上存在極小值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】為了解甲、乙兩個(gè)快遞公司的工作狀況,假設(shè)同一個(gè)公司快遞員的工作狀況基本相同,現(xiàn)從甲、乙兩公司各隨機(jī)抽取一名快遞員,并從兩人某月(30天)的快遞件數(shù)記錄結(jié)果中隨機(jī)抽取10天的數(shù)據(jù),制表如圖:
每名快遞員完成一件貨物投遞可獲得的勞務(wù)費(fèi)情況如下:甲公司規(guī)定每件4.5元;乙公司規(guī)定每天35件以內(nèi)(含35件)的部分每件4元,超出35件的部分每件7元.
(1)根據(jù)表中數(shù)據(jù)寫出甲公司員工A在這10天投遞的快遞件數(shù)的平均數(shù)和眾數(shù);
(2)為了解乙公司員工B的每天所得勞務(wù)費(fèi)的情況,從這10天中隨機(jī)抽取1天,他所得的勞務(wù)費(fèi)記為X(單位:元),求X的分布列和數(shù)學(xué)期望;
(3)根據(jù)表中數(shù)據(jù)估算兩公司的每位員工在該月所得的勞務(wù)費(fèi).
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】在①,②,③這三個(gè)條件中任選一個(gè),補(bǔ)充在下面的問(wèn)題中,并解決該問(wèn)題.
已知的內(nèi)角,,的對(duì)邊分別為,,______________,,,求的面積.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】如圖1,在中, , 分別為, 的中點(diǎn),為的中點(diǎn),,.將沿折起到的位置,使得平面平面,如圖2.
(1)求證:;
(2)求直線和平面所成角的正弦值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】某部影片的盈利額(即影片的票房收入與固定成本之差)記為,觀影人數(shù)記為,其函數(shù)圖象如圖(1)所示.由于目前該片盈利未達(dá)到預(yù)期,相關(guān)人員提出了兩種調(diào)整方案,圖(2)、圖(3)中的實(shí)線分別為調(diào)整后與的函數(shù)圖象.
給出下列四種說(shuō)法:
①圖(2)對(duì)應(yīng)的方案是:提高票價(jià),并提高成本;
②圖(2)對(duì)應(yīng)的方案是:保持票價(jià)不變,并降低成本;
③圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并保持成本不變;
④圖(3)對(duì)應(yīng)的方案是:提高票價(jià),并降低成本.
其中,正確的說(shuō)法是____________.(填寫所有正確說(shuō)法的編號(hào))
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】
在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(a為參數(shù)),在以原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為.
(1)求C的普通方程和l的傾斜角;
(2)設(shè)點(diǎn),l和C交于A,B兩點(diǎn),求.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知橢圓的離心率為,點(diǎn), , 分別為橢圓的右頂點(diǎn)、上頂點(diǎn)和右焦點(diǎn),且.
(1)求橢圓的方程;
(2)已知直線: 被圓: 所截得的弦長(zhǎng)為,若直線與橢圓交于, 兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目: 來(lái)源: 題型:
【題目】已知三棱錐中, , 為的中點(diǎn), 為的中點(diǎn),且為正三角形.
(1)求證: 平面;
(2)若,求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com