科目: 來源: 題型:
【題目】在四棱錐中,平面,,,,,與平面所成的角是,是的中點(diǎn),在線段上,且滿足.
(1)求二面角的余弦值;
(2)在線段上是否存在點(diǎn),使得與平面所成角的余弦值是,若存在,求的長;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角梯形中,,點(diǎn)是中點(diǎn),且,現(xiàn)將三角形沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知點(diǎn)在橢圓上,橢圓的右焦點(diǎn),直線過橢圓的右頂點(diǎn),與橢圓交于另一點(diǎn),與軸交于點(diǎn).
(1)求橢圓的方程;
(2)若為弦的中點(diǎn),是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由;
(3)若,交橢圓于點(diǎn),求的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。
(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:
(2)若成等比數(shù)列,求a的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)x=1處的切線方程為
l:y=3x+1,且當(dāng)x=時(shí),y=f(x)有極值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,
求直線l的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分12分)
如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4,AB=5,AA1=4,點(diǎn)D是AB的
中點(diǎn).
(1) 求證: AC⊥BC1
(2) 求證:AC1∥平面CDB1
(3) 求異面直線AC1與B1C所成角的余弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過千米小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,
(1)把全程運(yùn)輸成本(元)表示為速度(千米小時(shí))的函效:并求出當(dāng)時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最小;
(2)隨著汽車的折舊,運(yùn)輸成本會發(fā)生一些變化,那么當(dāng),此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會使得運(yùn)輸成本最小,
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知是遞增數(shù)列,其前項(xiàng)和為,,且,.
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請說明理由;
(Ⅲ)設(shè),若對于任意的,不等式
恒成立,求正整數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com