相關(guān)習(xí)題
 0  264186  264194  264200  264204  264210  264212  264216  264222  264224  264230  264236  264240  264242  264246  264252  264254  264260  264264  264266  264270  264272  264276  264278  264280  264281  264282  264284  264285  264286  264288  264290  264294  264296  264300  264302  264306  264312  264314  264320  264324  264326  264330  264336  264342  264344  264350  264354  264356  264362  264366  264372  264380  266669 

科目: 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點(diǎn)。

1)證明: 平面;

2)設(shè), ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目: 來源: 題型:

【題目】在四棱錐中,平面,,,與平面所成的角是的中點(diǎn),在線段上,且滿足.

1)求二面角的余弦值;

2)在線段上是否存在點(diǎn),使得與平面所成角的余弦值是,若存在,求的長;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在直角梯形中,,點(diǎn)中點(diǎn),且,現(xiàn)將三角形沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知點(diǎn)在橢圓上,橢圓的右焦點(diǎn),直線過橢圓的右頂點(diǎn),與橢圓交于另一點(diǎn),與軸交于點(diǎn).

1)求橢圓的方程;

2)若為弦的中點(diǎn),是否存在定點(diǎn),使得恒成立?若存在,求出點(diǎn)的坐標(biāo),若不存在,請說明理由;

3)若,交橢圓于點(diǎn),求的范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。

(1)寫出直線l的普通方程和曲線C的直角坐標(biāo)方程:

(2)若成等比數(shù)列,求a的值。

查看答案和解析>>

科目: 來源: 題型:

【題目】

已知函數(shù)f(x)=x3ax2bxc,曲線yf(x)在點(diǎn)x=1處的切線方程為

ly=3x+1,且當(dāng)x時(shí),yf(x)有極值.

(1)求ab,c的值;

(2)求yf(x)在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).

(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;

(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且BC=OA,

求直線l的方程.

查看答案和解析>>

科目: 來源: 題型:

【題目】(本小題滿分12分)

如圖在直三棱柱ABC—A1B1C1中,AC=3,BC=4AB=5,AA1=4,點(diǎn)DAB

中點(diǎn).

(1) 求證: AC⊥BC1

(2) 求證:AC1平面CDB1

(3) 求異面直線AC1B1C所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過千米小時(shí),已知汽車每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,

(1)把全程運(yùn)輸成本()表示為速度(千米小時(shí))的函效:并求出當(dāng)時(shí),汽車應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最小;

(2)隨著汽車的折舊,運(yùn)輸成本會發(fā)生一些變化,那么當(dāng),此時(shí)汽車的速度應(yīng)調(diào)整為多大,才會使得運(yùn)輸成本最小,

查看答案和解析>>

科目: 來源: 題型:

【題目】

已知是遞增數(shù)列,其前項(xiàng)和為,,且,

)求數(shù)列的通項(xiàng);

)是否存在使得成立?若存在,寫出一組符合條件的的值;若不存在,請說明理由;

)設(shè),若對于任意的,不等式

恒成立,求正整數(shù)的最大值.

查看答案和解析>>

同步練習(xí)冊答案