科目: 來源: 題型:
【題目】下面推理是類比推理的是( )
A.兩條直線平行,則同旁內(nèi)角互補(bǔ),若和是同旁內(nèi)角,則
B.某校高二有20個(gè)班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此推測(cè)各班都超過50位團(tuán)員
C.由平面三角形的面積(其中是三角形的周長(zhǎng),是三角形內(nèi)切圓的半徑),推測(cè)空間中三棱錐的體積(其中是三棱錐的表面積,是三棱錐內(nèi)切球的半徑)
D.一切偶數(shù)能被2整除,是偶數(shù),故能被2整數(shù)
查看答案和解析>>
科目: 來源: 題型:
【題目】已知直線的參數(shù)方程是(是參數(shù)),以坐標(biāo)原點(diǎn)為原點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)判斷直線與曲線的位置關(guān)系;
(2)過直線上的點(diǎn)作曲線的切線,求切線長(zhǎng)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知.
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:對(duì)于,恒成立;
(3)若存在,使得當(dāng)時(shí),恒有成立,試求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)函數(shù)存在零點(diǎn)時(shí),求的取值范圍;
(2)討論函數(shù)在區(qū)間內(nèi)零點(diǎn)的個(gè)數(shù).
查看答案和解析>>
科目: 來源: 題型:
【題目】某企業(yè)擬用10萬元投資甲、乙兩種商品.已知各投入萬元,甲、乙兩種商品分別可獲得萬元的利潤(rùn),利潤(rùn)曲線,,如圖所示.
(1)求函數(shù)的解析式;
(2)應(yīng)怎樣分配投資資金,才能使投資獲得的利潤(rùn)最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)若時(shí),求函數(shù)在點(diǎn)處的切線方程;
(2)若函數(shù)在時(shí)取得極值,當(dāng)時(shí),求使得恒成立的實(shí)數(shù)的取值范圍;
(3)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】
已知(為常數(shù),且),設(shè)是首項(xiàng)為4,公差為2的等差數(shù)列.
(1)求證:數(shù)列{}是等比數(shù)列;
(2)若,記數(shù)列的前n項(xiàng)和為,當(dāng)時(shí),求;
(3)若,問是否存在實(shí)數(shù),使得中每一項(xiàng)恒小于它后面的項(xiàng)?
若存在,求出實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖所示,在棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求證:BC⊥PC;
(2)求PB與平面PAC所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在四棱錐中,,,和都是邊長(zhǎng)為2的等邊三角形,設(shè)在底面的射影為.
(1)求證:是中點(diǎn);
(2)證明:;
(3)求點(diǎn)到面的距離.
查看答案和解析>>
科目: 來源: 題型:
【題目】某地棚戶區(qū)改造建筑平面示意圖如圖所示,經(jīng)規(guī)劃調(diào)研確定,棚改規(guī)劃建筑用地區(qū)域近似為圓面,該圓面的內(nèi)接四邊形是原棚戶區(qū)建筑用地,測(cè)量可知邊界萬米,萬米,萬米.
(1)請(qǐng)計(jì)算原棚戶區(qū)建筑用地的面積及的長(zhǎng);
(2)因地理?xiàng)l件的限制,邊界不能更改,而邊界可以調(diào)整,為了提高棚戶區(qū)建筑用地的利用率,請(qǐng)?jiān)趫A弧上設(shè)計(jì)一點(diǎn),使得棚戶區(qū)改造后的新建筑用地的面積最大,并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com