科目: 來源: 題型:
【題目】隨著經(jīng)濟(jì)的發(fā)展,個(gè)人收入的提高,自2019年1月1日起,個(gè)人所得稅起征點(diǎn)和稅率的調(diào)整.調(diào)整如下:納稅人的工資、薪金所得,以每月全部收入額減除5000元后的余額為應(yīng)納稅所得額.依照個(gè)人所得稅稅率表,調(diào)整前后的計(jì)算方法如下表:
個(gè)人所得稅稅率表(調(diào)整前) | 個(gè)人所得稅稅率表(調(diào)整后) | ||||
免征額3500元 | 免征額5000元 | ||||
級數(shù) | 全月應(yīng)納稅所得額 | 稅率() | 級數(shù) | 全月應(yīng)納稅所得額 | 稅率() |
1 | 不超過1500元部分 | 3 | 1 | 不超過3000元部分 | 3 |
2 | 超過1500元至4500元的部分 | 10 | 2 | 超過3000元至12000元的部分 | 10 |
3 | 超過4500元至9000元的部分 | 20 | 3 | 超過12000元至25000元的部分 | 20 |
… | … | … | … | … | … |
(1)假如小紅某月的工資、薪金等所得稅前收入總和不高于8000元,記表示總收入,表示應(yīng)納的稅,試寫出調(diào)整前后關(guān)于的函數(shù)表達(dá)式;
(2)某稅務(wù)部門在小紅所在公司利用分層抽樣方法抽取某月100個(gè)不同層次員工的稅前收入,并制成下面的頻數(shù)分布表:
收入 (元) | ||||||
人數(shù) | 30 | 40 | 10 | 8 | 7 | 5 |
先從收入在及的人群中按分層抽樣抽取7人,再從中選2人作為新納稅法知識宣講員,求兩個(gè)宣講員不全是同一收入人群的概率;
(3)小紅該月的工資、薪金等稅前收入為7500元時(shí),請你幫小紅算一下調(diào)整后小紅的實(shí)際收入比調(diào)整前增加了多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】某社區(qū)消費(fèi)者協(xié)會為了解本社區(qū)居民網(wǎng)購消費(fèi)情況,隨機(jī)抽取了100位居民作為樣本,就最近一年來網(wǎng)購消費(fèi)金額(單位:千元),網(wǎng)購次數(shù)和支付方式等進(jìn)行了問卷調(diào)査.經(jīng)統(tǒng)計(jì)這100位居民的網(wǎng)購消費(fèi)金額均在區(qū)間內(nèi),按,,,,,分成6組,其頻率分布直方圖如圖所示.
(1)估計(jì)該社區(qū)居民最近一年來網(wǎng)購消費(fèi)金額的中位數(shù);
(2)將網(wǎng)購消費(fèi)金額在20千元以上者稱為“網(wǎng)購迷”,補(bǔ)全下面的列聯(lián)表,并判斷有多大把握認(rèn)為“網(wǎng)購迷與性別有關(guān)系”;
男 | 女 | 合計(jì) | |
網(wǎng)購迷 | 20 | ||
非網(wǎng)購迷 | 45 | ||
合計(jì) | 100 |
(3)調(diào)査顯示,甲、乙兩人每次網(wǎng)購采用的支付方式相互獨(dú)立,兩人網(wǎng)購時(shí)間與次數(shù)也互不. 影響.統(tǒng)計(jì)最近一年來兩人網(wǎng)購的總次數(shù)與支付方式,所得數(shù)據(jù)如下表所示:
網(wǎng)購總次數(shù) | 支付寶支付次數(shù) | 銀行卡支付次數(shù) | 微信支付次數(shù) | |
甲 | 80 | 40 | 16 | 24 |
乙 | 90 | 60 | 18 | 12 |
將頻率視為概率,若甲、乙兩人在下周內(nèi)各自網(wǎng)購2次,記兩人采用支付寶支付的次數(shù)之和為,求的數(shù)學(xué)期望.
附:觀測值公式:
臨界值表:
0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線:,過其焦點(diǎn)作斜率為1的直線交拋物線于,兩點(diǎn),且線段的中點(diǎn)的縱坐標(biāo)為4.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不過原點(diǎn)且斜率存在的直線與拋物線相交于、兩點(diǎn),且.求證:直線過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為,點(diǎn)在拋物線上,,直線過點(diǎn),且與拋物線交于,兩點(diǎn).
(1)求拋物線的方程及點(diǎn)的坐標(biāo);
(2)求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線與交點(diǎn)的極坐標(biāo);
(2)、兩點(diǎn)分別在曲線與上,當(dāng)最大時(shí),求的面積(為坐標(biāo)原點(diǎn))
查看答案和解析>>
科目: 來源: 題型:
【題目】(本題滿分12分)如圖, 是圓的直徑,點(diǎn)是圓上異于的點(diǎn), 垂直于圓所在的平面,且.
(Ⅰ)若為線段的中點(diǎn),求證平面;
(Ⅱ)求三棱錐體積的最大值;
(Ⅲ)若,點(diǎn)在線段上,求的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】菜農(nóng)定期使用低害殺蟲農(nóng)藥對蔬菜進(jìn)行噴灑,以防止害蟲的危害,但采集上市時(shí)蔬菜仍存有少量的殘留農(nóng)藥,食用時(shí)需要用清水清洗干凈,下表是用清水x(單位:千克)清洗該蔬菜1千克后,蔬菜上殘留的農(nóng)藥y(單位:微克)的數(shù)據(jù)作了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.
y(微克)
x(千克)
| ||||||
3 | 38 | 11 | 10 | 374 | -121 | -751 |
其中
(I)根據(jù)散點(diǎn)圖判斷,與,哪一個(gè)適宜作為蔬菜農(nóng)藥殘量與用水量的回歸方程類型(給出判斷即可,不必說明理由);
(Ⅱ)若用解析式
(Ⅲ)對于某種殘留在蔬菜上的農(nóng)藥,當(dāng)它的殘留量低于20微克時(shí)對人體無害,為了放心食用該蔬菜,請估計(jì)需要用多少千克的清水清洗一千克蔬菜?(精確到0.1,參考數(shù)據(jù))
附:參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
查看答案和解析>>
科目: 來源: 題型:
【題目】有一個(gè)同學(xué)家開了一個(gè)小賣部,他為了研究氣溫對熱飲飲料銷售的影響,經(jīng)過統(tǒng)計(jì),得到一個(gè)賣出的熱飲杯數(shù)與當(dāng)天氣溫的散點(diǎn)圖和對比表:
攝氏溫度 | ||||||||
熱飲杯數(shù) |
(1)從散點(diǎn)圖可以發(fā)現(xiàn),各點(diǎn)散布在從左上角到右下角的區(qū)域里。因此,氣溫與當(dāng)天熱飲銷售杯數(shù)之間成負(fù)相關(guān),即氣溫越高,當(dāng)天賣出去的熱飲杯數(shù)越少。統(tǒng)計(jì)中常用相關(guān)系數(shù)來衡量兩個(gè)變量之間線性關(guān)系的強(qiáng)弱.統(tǒng)計(jì)學(xué)認(rèn)為,對于變量、,如果,那么負(fù)相關(guān)很強(qiáng);如果,那么正相關(guān)很強(qiáng);如果,那么相關(guān)性一般;如果,那么相關(guān)性較弱。請根據(jù)已知數(shù)據(jù),判斷氣溫與當(dāng)天熱飲銷售杯數(shù)相關(guān)性的強(qiáng)弱.
(2)(i)請根據(jù)已知數(shù)據(jù)求出氣溫與當(dāng)天熱飲銷售杯數(shù)的線性回歸方程;
(ii)記為不超過的最大整數(shù),如,.對于(i)中求出的線性回歸方程,將視為氣溫與當(dāng)天熱飲銷售杯數(shù)的函數(shù)關(guān)系.已知?dú)鉁?/span>與當(dāng)天熱飲每杯的銷售利潤的關(guān)系是 (單位:元),請問當(dāng)氣溫為多少時(shí),當(dāng)天的熱飲銷售利潤總額最大?
(參考公式),,
(參考數(shù)據(jù)),, .
,,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面四邊形中,,是,中點(diǎn),,,,將沿對角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是( )
A. 平面
B. 異面直線與所成的角為
C. 異面直線與所成的角為
D. 直線與平面所成的角為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com