科目: 來源: 題型:
【題目】“垛積術(shù)”(隙積術(shù))是由北宋科學(xué)家沈括在《夢溪筆談》中首創(chuàng),南宋數(shù)學(xué)家楊輝、元代數(shù)學(xué)家朱世杰豐富和發(fā)展的一類數(shù)列求和方法,有菱草垛、方垛、芻童垛、三角垛等等,某倉庫中部分貨物堆放成如圖所示的“菱草垛”:自上而下,第一層1件,以后每一層比上一層多1件,最后一層是n件,已知第一層貨物單價(jià)1萬元,從第二層起,貨物的單價(jià)是上一層單價(jià)的.若這堆貨物總價(jià)是萬元,則n的值為( )
A. 7B. 8C. 9D. 10
查看答案和解析>>
科目: 來源: 題型:
【題目】某部隊(duì)在一次軍演中要先后執(zhí)行六項(xiàng)不同的任務(wù),要求是:任務(wù)A必須排在前三項(xiàng)執(zhí)行,且執(zhí)行任務(wù)A之后需立即執(zhí)行任務(wù)E,任務(wù)B、任務(wù)C不能相鄰,則不同的執(zhí)行方案共有( )
A. 36種B. 44種C. 48種D. 54種
查看答案和解析>>
科目: 來源: 題型:
【題目】對(duì)在直角坐標(biāo)系的第一象限內(nèi)的任意兩點(diǎn),作如下定義:,那么稱點(diǎn)是點(diǎn)的“上位點(diǎn)”,同時(shí)點(diǎn)是點(diǎn)的“下位點(diǎn)”.
(1)試寫出點(diǎn)的一個(gè)“上位點(diǎn)”坐標(biāo)和一個(gè)“下位點(diǎn)”坐標(biāo);
(2)設(shè)、、、均為正數(shù),且點(diǎn)是點(diǎn)的上位點(diǎn),請(qǐng)判斷點(diǎn)是否既是點(diǎn)的“下位點(diǎn)”又是點(diǎn)的“上位點(diǎn)”,如果是請(qǐng)證明,如果不是請(qǐng)說明理由;
(3)設(shè)正整數(shù)滿足以下條件:對(duì)任意實(shí)數(shù),總存在,使得點(diǎn)既是點(diǎn)的“下位點(diǎn)”,又是點(diǎn)的“上位點(diǎn)”,求正整數(shù)的最小值.
查看答案和解析>>
科目: 來源: 題型:
【題目】上饒市在某次高三適應(yīng)性考試中對(duì)數(shù)學(xué)成績數(shù)據(jù)統(tǒng)計(jì)顯示,全市10000名學(xué)生的成績近似服從正態(tài)分布,現(xiàn)某校隨機(jī)抽取了50名學(xué)生的數(shù)學(xué)成績分析,結(jié)果這50名學(xué)生的成績?nèi)拷橛?/span>85分到145分之間,現(xiàn)將結(jié)果按如下方式分為6組,第一組,第二組,…,第六組,得到如圖所示的頻率分布直方圖:
(1)試由樣本頻率分布直方圖估計(jì)該校數(shù)學(xué)成績的平均分?jǐn)?shù);
(2)若從這50名學(xué)生中成績?cè)?/span>125分(含125分)以上的同學(xué)中任意抽取3人,該3人在全市前13名的人數(shù)記為,求的概率.
附:若,則,,.
查看答案和解析>>
科目: 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計(jì)表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營業(yè)收入占比 | ||||
凈利潤占比 |
則下列判斷中不正確的是( )
A. 該公司2018年度冰箱類電器營銷虧損
B. 該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C. 該公司2018年度凈利潤主要由空調(diào)類電器銷售提供
D. 剔除冰箱類電器銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會(huì)降低
查看答案和解析>>
科目: 來源: 題型:
【題目】某地隨著經(jīng)濟(jì)的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲(chǔ)蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲(chǔ)蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計(jì)算的方便,工作人員將上表的數(shù)據(jù)進(jìn)行了處理, 得到下表2:
時(shí)間代號(hào)t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關(guān)于t的線性回歸方程;
(Ⅱ)用所求回歸方程預(yù)測到2020年年底,該地儲(chǔ)蓄存款額可達(dá)多少?
(附:對(duì)于線性回歸方程,其中)
查看答案和解析>>
科目: 來源: 題型:
【題目】司機(jī)在開機(jī)動(dòng)車時(shí)使用手機(jī)是違法行為,會(huì)存在嚴(yán)重的安全隱患,危及自己和他人的生命. 為了研究司機(jī)開車時(shí)使用手機(jī)的情況,交警部門調(diào)查了名機(jī)動(dòng)車司機(jī),得到以下統(tǒng)計(jì):在名男性司機(jī)中,開車時(shí)使用手機(jī)的有人,開車時(shí)不使用手機(jī)的有人;在名女性司機(jī)中,開車時(shí)使用手機(jī)的有人,開車時(shí)不使用手機(jī)的有人.
(1)完成下面的列聯(lián)表,并判斷是否有的把握認(rèn)為開車時(shí)使用手機(jī)與司機(jī)的性別有關(guān);
開車時(shí)使用手機(jī) | 開車時(shí)不使用手機(jī) | 合計(jì) | |
男性司機(jī)人數(shù) | |||
女性司機(jī)人數(shù) | |||
合計(jì) |
(2)以上述的樣本數(shù)據(jù)來估計(jì)總體,現(xiàn)交警部門從道路上行駛的大量機(jī)動(dòng)車中隨機(jī)抽檢3輛,記這3輛車中司機(jī)為男性且開車時(shí)使用手機(jī)的車輛數(shù)為,若每次抽檢的結(jié)果都相互獨(dú)立,求的分布列和數(shù)學(xué)期望.
參考公式與數(shù)據(jù):
參考數(shù)據(jù):
參考公式
,其中.
查看答案和解析>>
科目: 來源: 題型:
【題目】某教研部門對(duì)本地區(qū)甲、乙、丙三所學(xué)校高三年級(jí)進(jìn)行教學(xué)質(zhì)量抽樣調(diào)查,甲、乙、丙三所學(xué)校高三年級(jí)班級(jí)數(shù)量(單位:個(gè))如下表所示。研究人員用分層抽樣的方法從這三所學(xué)校中共抽取6個(gè)班級(jí)進(jìn)行調(diào)查.
學(xué)校 | 甲 | 乙 | 丙 |
數(shù)量 | 4 | 12 | 8 |
(1)求這6個(gè)班級(jí)中來自甲、乙、丙三所學(xué)校的數(shù)量;
(2)若在這6個(gè)班級(jí)中隨機(jī)抽取2個(gè)班級(jí)做進(jìn)一步調(diào)查,
①列舉出所有可能的抽取結(jié)果;
②求這2個(gè)班級(jí)來自同一個(gè)學(xué)校的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】某大學(xué)畢業(yè)生參加一個(gè)公司的招聘考試,考試分筆試和面試兩個(gè)環(huán)節(jié),筆試有、兩個(gè)題目,該學(xué)生答對(duì)、兩題的概率分別為、,兩題全部答對(duì)方可進(jìn)入面試.面試要回答甲、乙兩個(gè)問題,該學(xué)生答對(duì)這兩個(gè)問題的概率均為,至少答對(duì)一個(gè)問題即可被聘用,若只答對(duì)一問聘為職員,答對(duì)兩問聘為助理(假設(shè)每個(gè)環(huán)節(jié)的每個(gè)題目或問題回答正確與否是相互獨(dú)立的).
(1)求該學(xué)生被公司聘用的概率;
(2)設(shè)該學(xué)生應(yīng)聘結(jié)束后答對(duì)的題目或問題的總個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com