科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,以原點0為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若曲線方程中的參數(shù)是,且與有且只有一個公共點,求的普通方程;
(2)已知點,若曲線方程中的參數(shù)是,,且與相交于,兩個不同點,求的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)常數(shù),已知復(fù)數(shù),和,其中均為實數(shù),為虛數(shù)單位,且對于任意復(fù)數(shù),有,將作為點的坐標(biāo),作為點的坐標(biāo),通過關(guān)系式,可以看作是坐標(biāo)平面上點的一個變換,它將平面上的點變到這個平面上的點.
(1)分別寫出和用表示的關(guān)系式;
(2)設(shè),當(dāng)點在圓上移動時,求證:點經(jīng)該變換后得到的點落在一個圓上,并求出該圓的方程;
(3)求證:對于任意的常數(shù),總存在曲線,使得當(dāng)點在上移動時,點經(jīng)這個變換后得到的點的軌跡是二次函數(shù)的圖像,并寫出對于正常數(shù),滿足條件的曲線的方程.
查看答案和解析>>
科目: 來源: 題型:
【題目】在正方體中,如果動點在線段上,動點在正方體的四條邊上,那么,對于任何一條直線,在平面上,總存在相應(yīng)的一條直線,使得該直線與直線( )
A.平行B.異面C.相交D.垂直
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求橢圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(2)若點的極坐標(biāo)為,直線與橢圓相交于,兩點,求的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定圓,過定點的直線交圓于兩點.
(1)若,求直線的斜率;
(2)求面積的取值范圍;
(3)若圓內(nèi)一點的坐標(biāo)是,且過點的直線交圓于兩點,,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓C:x2+y2+2x-4y+3=0.
(1)若圓C的切線在x軸和y軸上的截距相等,求此切線的方程.
(2)從圓C外一點P(x1,y1)向該圓引一條切線,切點為M,O為坐標(biāo)原點,且有|PM|=|PO|,求使得|PM|取得最小值的點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,平面中兩條直線和相交于點O,對于平面上任意一點M,若x,y分別是M到直線和的距離,則稱有序非負(fù)實數(shù)對(x,y)是點M的“距離坐標(biāo)”.已知常數(shù)p≥0,q≥0,給出下列三個命題:
①若p=q=0,則“距離坐標(biāo)”為(0,0)的點有且只有1個;
②若pq=0,且p+q≠0,則“距離坐標(biāo)”為(p,q)的點有且只有2個;
③若pq≠0則“距離坐標(biāo)”為(p,q)的點有且只有4個.
上述命題中,正確命題的是______.(寫出所有正確命題的序號)
查看答案和解析>>
科目: 來源: 題型:
【題目】某人有樓房一幢,室內(nèi)總面積為,擬分割成兩類房間作為旅游客房,有關(guān)的數(shù)據(jù)如下表:
大房間 | 小房間 | |
每間的面積 | ||
每間裝修費(fèi) | 元 | 6000元 |
每天每間住人數(shù) | 5人 | 3人 |
每天每人住宿費(fèi) | 80元 | 100元 |
如果他只能籌款80000元用于裝修,且游客能住滿客房,他應(yīng)隔出大房間和小房間各多少間,能獲得的住宿總收入最多?每天獲得的住宿總收入最多是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com