科目: 來源: 題型:
【題目】如圖,在四棱錐中,,底面ABCD是邊長為3的正方形,EFG分別是棱ABPBPC的中點(diǎn),,.
(Ⅰ)求證:平面EFG∥平面PAD;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知橢圓的離心率為,分別是橢圓的左右焦點(diǎn),點(diǎn)是橢圓上任意一點(diǎn),且.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)在直線上是否存在點(diǎn)Q,使以為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)O,若存在,求出線段的長的最小值,若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓G的中心在坐標(biāo)原點(diǎn),其中一個焦點(diǎn)為圓F:x2+y2﹣2x=0的圓心,右頂點(diǎn)是圓F與x軸的一個交點(diǎn).已知橢圓G與直線l:x﹣my﹣1=0相交于A、B兩點(diǎn).
(I)求橢圓的方程;
(Ⅱ)求△AOB面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
極坐標(biāo)系的極點(diǎn)為直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,兩種坐標(biāo)系中的長度單位相同,已知曲線的極坐標(biāo)方程為.
(1)求的直角坐標(biāo)方程;
(2)直線(為參數(shù))與曲線交于兩點(diǎn),與軸交于,求.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)在處的切線與直線平行.
(1)求實(shí)數(shù)的值;
(2)若函數(shù)在上恰有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.
(3)記函數(shù),設(shè)是函數(shù)的兩個極值點(diǎn),若,且恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著中國教育改革的不斷深入,越來越多的教育問題不斷涌現(xiàn).“衡水中學(xué)模式”入駐浙江,可以說是應(yīng)試教育與素質(zhì)教育的強(qiáng)烈碰撞.這一事件引起了廣大市民的密切關(guān)注.為了了解廣大市民關(guān)注教育問題與性別是否有關(guān),記者在北京,上海,深圳隨機(jī)調(diào)查了100位市民,其中男性55位,女性45位.男性中有45位關(guān)注教育問題,其余的不關(guān)注教育問題;女性中有30位關(guān)注教育問題,其余的不關(guān)注教育問題.
(1)根據(jù)以上數(shù)據(jù)完成下列2×2列聯(lián)表;
關(guān)注教育問題 | 不關(guān)注教育問題 | 合計(jì) | |||||
女 | 30 | 45 | |||||
男 | 45 | 55 | |||||
合計(jì) | 100 | ||||||
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | ||
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | |||
(2)能否在犯錯誤的概率不超過0.025的前提下認(rèn)為是否關(guān)注教育與性別有關(guān)系?
參考公式:,其中.
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的發(fā)展,與餐飲美食相關(guān)的手機(jī)軟件層出不窮.為調(diào)查某款訂餐軟件的商家的服務(wù)情況,統(tǒng)計(jì)了10次訂餐“送達(dá)時間”,得到莖葉圖如下:(時間:分鐘)
(1)請計(jì)算“送達(dá)時間”的平均數(shù)與方差:
(2)根據(jù)莖葉圖填寫下表:
送達(dá)時間 | 35分組以內(nèi)(包括35分鐘) | 超過35分鐘 |
頻數(shù) | A | B |
頻率 | C | D |
在答題卡上寫出,,,的值;
(3)在(2)的情況下,以頻率代替概率.現(xiàn)有3個客戶應(yīng)用此軟件訂餐,求出在35分鐘以內(nèi)(包括35分鐘)收到餐品的人數(shù)的分布列,并求出數(shù)學(xué)期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出下列四個命題:①“”是“”成立的必要不充分條件②命題“若,則”的否命題是:“若,則”;③命題“,使得”的否定是:“,均有”④如果命題“”與命題“”都是真命題,那么命題一定是真命題;其中為真命題的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖1,在矩形中,,,點(diǎn)、分別在線段、上,且,,現(xiàn)將沿折到的位置,連結(jié),,如圖2
(1)證明:;
(2)記平面與平面的交線為.若二面角為,求與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,動點(diǎn)到點(diǎn)的距離和它到直線的距離相等,記點(diǎn)的軌跡為.
(1)求的方程;
(2)設(shè)點(diǎn)在曲線上,軸上一點(diǎn)(在點(diǎn)右側(cè))滿足,若平行于的直線與曲線相切于點(diǎn),試判斷直線是否過點(diǎn)?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com