相關習題
 0  203318  203326  203332  203336  203342  203344  203348  203354  203356  203362  203368  203372  203374  203378  203384  203386  203392  203396  203398  203402  203404  203408  203410  203412  203413  203414  203416  203417  203418  203420  203422  203426  203428  203432  203434  203438  203444  203446  203452  203456  203458  203462  203468  203474  203476  203482  203486  203488  203494  203498  203504  203512  266669 

科目: 來源: 題型:

已知函數(shù)f(x)=
x2
4
+ax+
a
2
  
(1)若函數(shù)f(x)在(-∞,-4)上的減函數(shù),求a的值;
(2)當|x|≤2時,記函數(shù)f(x)的最小值為g(a),求出g(a)的解析式.

查看答案和解析>>

科目: 來源: 題型:

已知,四棱錐P-ABCD中,底面ABCD為平行四邊形,點M,N,Q分別在PA,BD,PD上,且PM:MA=BN:ND=PQ:QD.
求證:平面MNQ∥平面PBC.

查看答案和解析>>

科目: 來源: 題型:

證明:空間不共點且兩兩相交的四條直線在同一平面內(nèi).

查看答案和解析>>

科目: 來源: 題型:

對數(shù)函數(shù)y=logax(a>0且a≠1)和指數(shù)函數(shù)y=ax(a>0且a≠1)互為反函數(shù),已知函數(shù)g(x)=log 
1
2
x,其反函數(shù)為y=f(x).
(1)若函數(shù)g(kx2+2x+1)的定義域為R,求實數(shù)k的取值范圍;
(2)當x∈[-1,1]時,求函數(shù)y=[f(x)]2-2tf(x)+3的最小值φ(t);
(3)定義在I上的函數(shù)F(x),如果滿足,對任意x∈I,存在常數(shù)M,使得F(x)≤M成立,則稱函數(shù)F(x)是I上的“上限”函數(shù),其中M為函數(shù)F(x)的“上限”,記h(x)=
1-mf(-x)
1+mf(-x)
(m≠0),試問:函數(shù)h(x)在區(qū)間[0,1]上是否存在“上限”M?若存在,求出M的取值范圍,若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:

求證:正△ABC外接圓上的任意一點P到三角形三個頂點的距離的平方和為定值.

查看答案和解析>>

科目: 來源: 題型:

設f(x)=-x3+ax2+bx+c(a>0),在x=1處取得極大值,
(1)若曲線y=f(x)在點(
1
3
,f(
1
3
))處切線的斜率為
4
3
,求a,b;
(2)若曲線y=f(x)存在斜率為
4
3
的切線.求a的取值范圍;
(3)在(2)的條件下,是否存在實數(shù)a,使得對?x∈(-∞,0],都有f(x)≥c.

查看答案和解析>>

科目: 來源: 題型:

直線l:y=m(m為實常數(shù))與曲線E:y=|lnx|的兩個交點A、B的橫坐標分別為x1、x2,且x1<x2,曲線E在點A、B處的切線PA、PB與y軸分別交于點M、N,有下面4個結論:
①|(zhì)
MN
|=2;
②三角形PAB可能為等腰三角形;
③若直線l與y軸的交點為Q,則|PQ|=1;
④是函數(shù)g(x)=x2+lnx的零點時,|
AO
|(O為坐標原點)取得最小值.
其中正確結論有
 
.(寫出所有正確結論的序號)

查看答案和解析>>

科目: 來源: 題型:

在△ABC中,∠A,∠B,∠C的對邊分別為a、b、c,若
m
=(
3
sinA-cosA,1),
n
=(cosC,cosB),且
m
n

(1)求∠B的大。
(2)若a+c=1,求b的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

若直線l與橢圓x2+
y2
9
=1相交于不同的兩點M、N,且線段MN恰好被直線x+
1
2
=0平分,則直線l的傾斜角范圍是
 

查看答案和解析>>

科目: 來源: 題型:

拋物線y2=2px三點的縱坐標的平方成等差數(shù)列,則這三點的橫坐標(  )
A、成等差數(shù)列
B、成等比數(shù)列
C、即成等差數(shù)列又成等比數(shù)列
D、即不成等差數(shù)列又不成等比數(shù)列

查看答案和解析>>

同步練習冊答案