【題目】近年來,鄭州經(jīng)濟快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機抽取了1000名市民進行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計成如下的頻率分布直方圖,其中

1)求的值;

2)若按照分層抽樣從[50,60),[60,70)中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分?jǐn)?shù)在[50,60)的概率.

【答案】1;(2.

【解析】

根據(jù)頻率分布直方圖的特點:可列的式子:,求得,根據(jù)圖,可知a=4b,繼而求得a,b,先利用分層抽樣得方法,確定 [50,60),[60,70)中分別抽取的人數(shù),然后利用古典概型,求得概率

1)依題意得,所以,

a=4b,所以a=0.024,b=0.006.

2)依題意,知分?jǐn)?shù)在[50,60)的市民抽取了2人,記為a,b,分?jǐn)?shù)在[60,70)的市民抽取了6人,記為1,2,3,4,5,6,

所以從這8人中隨機抽取2人所有的情況為:(a,b),(a,1),(a,2),(a,3),(a,4),(a,5),(a,6),(b,1),(b,2),(b,3),(b,4),(b,5),(b,6),(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共28種,

其中滿足條件的為(a,b),(a,1),(a,2),(a,3),(a,4),(a,5),(a,6),(b,1),(b,2),(b,3),(b,4),(b,5),(b,6)共13種,

設(shè)“至少有1人的分?jǐn)?shù)在[50,60)”的事件為A,則PA)=.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐PABCD,底面ABCD為菱形,BAD60°QAD的中點.

(1)PAPD,求證:平面PQB⊥平面PAD;

(2)M在線段PC,PMtPC,試確定實數(shù)t的值使得PA∥平面MQB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

(1)若曲線處的切線的方程為,求實數(shù)的值;

(2)設(shè),若對任意兩個不等的正數(shù),都有恒成立,求實數(shù)的取值范圍;

(3)若在上存在一點,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用二分法求函數(shù)的一個正零點的近似值(精確度為0.1)時,依次計算得到如下數(shù)據(jù):f1)=–2,f1.5)=0.625,f1.25≈–0.984,f1.375≈–0.260,關(guān)于下一步的說法正確的是( )

A. 已經(jīng)達到精確度的要求,可以取1.4作為近似值

B. 已經(jīng)達到精確度的要求,可以取1.375作為近似值

C. 沒有達到精確度的要求,應(yīng)該接著計算f1.4375

D. 沒有達到精確度的要求,應(yīng)該接著計算f1.3125

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某化工廠一種溶液的成品,生產(chǎn)過程的最后工序是過濾溶液中的雜質(zhì),過濾初期溶液含雜質(zhì)為2%,每經(jīng)過一次過濾均可使溶液雜質(zhì)含量減少,記過濾次數(shù)為x)時溶液雜質(zhì)含量為y.

1)寫出yx的函數(shù)關(guān)系式;

2)按市場要求,出廠成品雜質(zhì)含量不能超過0.1%,問至少經(jīng)過幾次過濾才能使產(chǎn)品達到市場要求?(參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠生產(chǎn)一種機器的固定成本為0.5萬元,但每生產(chǎn)100臺,需要加可變成本(即另增加投入)0.25萬元,市場對此產(chǎn)品的年求量為500臺,銷售的收入函數(shù)為(萬元)(),其中是產(chǎn)品售出的數(shù)量(單位:百臺).

1)把利潤表示為年產(chǎn)量的函數(shù);

2)年產(chǎn)量是多少時,工廠所得利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分14分)

已知, 為橢圓的左、右頂點, 為其右焦點, 是橢圓上異于的動點,且面積的最大值為

)求橢圓的方程及離心率;

)直線與橢圓在點處的切線交于點,當(dāng)直線繞點轉(zhuǎn)動時,試判斷以

為直徑的圓與直線的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),函數(shù),其中為常數(shù),且,令函數(shù)為函數(shù)的積函數(shù).

1)求函數(shù)的表達式,并求其定義域;

2)當(dāng)時,求函數(shù)的值域

3)是否存在自然數(shù),使得函數(shù)的值域恰好為?若存在,試寫出所有滿足條件的自然數(shù)所構(gòu)成的集合;若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在高為2的梯形中,,,,過、分別作,,垂足分別為.已知,將梯形沿、

同側(cè)折起,使得,,得空間幾何體,如圖2.

(Ⅰ)證明:;

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案