【題目】已知函數(shù)的極小值為0.
(1)求實數(shù)的值;
(2)若不等式對任意恒成立,求實數(shù)的取值范圍.
【答案】(1);(2)
【解析】試題分析:(1)由極小值的定義知道,只需要令,解得,且描述兩側(cè)的單調(diào)性;(2)原式子轉(zhuǎn)化為在上恒成立;求導(dǎo),研究導(dǎo)函數(shù)的正負即可,從而得到函數(shù)的單調(diào)性和最值即可。
(1)∵,令,解得,
∴在上單調(diào)遞減,在上單調(diào)遞增,故的極小值為,
由題意有,解得.
(2)由(1)知不等式對任意恒成立,∵,∴在上恒成立,∵不妨設(shè), ,則.
當時, ,故,∴在上單調(diào)遞增,從而,∴不成立.當時,令,解得,若,即,當時, , 在上為增函數(shù),故,不合題意;若,即,當時, , 在上為減函數(shù),故,符合題意.綜上所述, 的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直平行六面體中,為棱上任意一點,為底面(除外)上一點,已知在底面上的射影為,若再增加一個條件,就能得到,現(xiàn)給出以下條件:
①;②在上;③平面;④直線和在平面的射影為同一條直線.其中一定能成為增加條件的是__________.(把你認為正確的都填上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本(萬元),若年產(chǎn)量不足千件, 的圖像是如圖的拋物線,此時的解集為,且的最小值是,若年產(chǎn)量不小于千件, ,每千件商品售價為50萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完;
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為矩形,側(cè)面為正三角形,且平面 平面, 為中點, .
(Ⅰ)求證:平面平面;
(Ⅱ)若二面角的平面角大小滿足,求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程是.
(1)寫出直線的普通方程和曲線的直角坐標方程;
(2)已知點.若點的極坐標為,直線經(jīng)過點且與曲線相交于兩點,設(shè)線段的中點為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)生產(chǎn)A、B、C三種家電,經(jīng)市場調(diào)查決定調(diào)整生產(chǎn)方案,計劃本季度(按不超過480個工時計算)生產(chǎn)A、B、C三種家電共120臺,其中A家電至少生產(chǎn)20臺,已知生產(chǎn)A、B、C三種家電每臺所需的工時分別為3、4、6個工時,每臺的產(chǎn)值分別為20、30、40千元,則按此方案生產(chǎn),此季度最高產(chǎn)值為( 。┣г
A. 3600 B. 350 C. 4800 D. 480
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)y=x3+x2+mx+1在(﹣∞,+∞)上是單調(diào)函數(shù),則實數(shù)a的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為R的函數(shù)f(x)= 是奇函數(shù),f(1)=﹣ .
(1)求a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), .
(Ⅰ)若曲線在點處的切線與直線垂直,求函數(shù)的極值;
(Ⅱ)設(shè)函數(shù).當時,若區(qū)間上存在,使得,求實數(shù)的取值范圍.(為自然對數(shù)底數(shù))
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com