【題目】已知p:,,q:,

(1)若q是真命題,求m的范圍;

(2)若為真,求實(shí)數(shù)m的取值范圍

【答案】(1)m-2(2)m<-2

【解析】

試題分析:(1)根據(jù)根的判別式求出m的范圍即可;(2)分別求出p為真,¬q為真時(shí)的m的范圍,得到關(guān)于m的不等式組,解出即可

試題解析:(1) 若q:x0R,+2x0-m-1=0為真,則方程x2+2x-m-1=0有實(shí)根,

4+4(m+1)0,m-2.

(2)2x>m(x2+1)可化為mx2-2x+m<0.

若p:xR, 2x>m(x2+1)為真.

則mx2-2x+m<0對(duì)任意的xR恒成立.

當(dāng)m=0時(shí),不等式可化為-2x<0,顯然不恒成立;

當(dāng)m0時(shí),有m<-1.

:m<-2

為真,故p、q均為真命題.m<-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:關(guān)于x的不等式ax>1(a>0,a≠1)的解集是{x|x<0},命題q:函數(shù)y=lg(ax2-x+a)的定義域?yàn)镽,如果p∨q為真命題,p∧q為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如下圖,是長(zhǎng)方形,平面平面,且的中點(diǎn).

(Ⅰ) 求證:平面;

(Ⅱ) 求三棱錐的體積;

(Ⅲ)若點(diǎn)是線段上的一點(diǎn),且平面平面,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列變化過程中,變量之間不是函數(shù)關(guān)系的為( )

A.地球繞太陽(yáng)公轉(zhuǎn)的過程中,二者間的距離與時(shí)間的關(guān)系

B.在銀行,給定本金和利率后,活期存款的利息與存款天數(shù)的關(guān)系

C.某地區(qū)玉米的畝產(chǎn)量與灌溉次數(shù)的關(guān)系

D.近年來(lái)中國(guó)高鐵年運(yùn)營(yíng)里程與年份的關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題中,正確的個(gè)數(shù)是(

①圓柱的軸截面是過母線的截面中最大的一個(gè);

②用任意一個(gè)平面去截球體得到的截面一定是一個(gè)圓面;

③用任意一個(gè)平面去截圓錐得到的截面一定是一個(gè)圓面.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊,分別為,邊的中點(diǎn),的中點(diǎn),邊上一點(diǎn),且,將沿折到的位置,使平面平面.

求證:平面平面

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過點(diǎn)的動(dòng)直線與圓相交于、兩點(diǎn), 與直線相交于.

當(dāng)垂直時(shí),求直線的方程,并判斷圓心與直線的位置關(guān)系;

當(dāng)時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊的邊長(zhǎng)為4,,分別為邊的中點(diǎn),的中點(diǎn),邊上一點(diǎn),且,將沿折到的位置,使平面平面.

(1)求證:平面平面

(2)設(shè),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有外形、質(zhì)量完全相同的紅球、黑球、黃球、綠球共12個(gè).從中任取一球,得到紅球的概率是,得到黑球或黃球的概率是,得到黃球或綠球的概率也是

1試分別求得到黑球、黃球、綠球的概率;

2從中任取一球,求得到的不是紅球或綠球的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案