【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中中,曲線的參數(shù)方程為為參數(shù),).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知直線的極坐標(biāo)方程為.

(1)求曲線的普通方程和直線的直角坐標(biāo)方程;

(2)設(shè)是曲線上的一個(gè)動(dòng)點(diǎn),若點(diǎn)到直線的距離的最大值為,求的值.

【答案】(1) , .(2).

【解析】

(1)根據(jù)曲線的參數(shù)方程,消去參數(shù)可直接得到其普通方程;由直線的極坐標(biāo)方程,根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,可直接得出結(jié)果;

(2)先設(shè)點(diǎn),根據(jù)點(diǎn)到直線距離公式,表示出點(diǎn)到直線的距離,結(jié)合最大值為,即可求出結(jié)果.

(1)依題意得曲線的普通方程為

因?yàn)?/span>所以,

因?yàn)?/span>,,

所以直線的直角坐標(biāo)方程為,

(2)設(shè)點(diǎn),則點(diǎn)到直線的距離

因?yàn)?/span>,所以當(dāng)時(shí),

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,四邊形是矩形,平面平面,點(diǎn)分別為中點(diǎn).

1)求證:平面.

2)若.

①求二面角的余弦值.

②求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1, 圓心在.

1)若圓心也在直線上,過點(diǎn)作圓的切線,求切線方程;

2)若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,四邊形為矩形,,均為等邊三角形,,.

1)過作截面與線段交于點(diǎn),使得平面,試確定點(diǎn)的位置,并予以證明;

2)在(1)的條件下,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知直線2xy﹣1=0與直線x﹣2y+1=0交于點(diǎn)P

求過點(diǎn)P且平行于直線3x+4y﹣15=0的直線的方程;(結(jié)果寫成直線方程的一般式)

求過點(diǎn)P并且在兩坐標(biāo)軸上截距相等的直線方程(結(jié)果寫成直線方程的一般式)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了在夏季降溫和冬季取暖時(shí)減少能源消耗,業(yè)主決定對(duì)房屋的屋頂和外墻噴涂某種新型隔熱材料,該材料有效使用年限為20年.已知房屋外表噴一層這種隔熱材料的費(fèi)用為每毫米厚6萬元,且每年的能源消耗費(fèi)用(萬元)與隔熱層厚度(毫米)滿足關(guān)系:.設(shè)為隔熱層建造費(fèi)用與年的能源消耗費(fèi)用之和.

(1)請(qǐng)解釋的實(shí)際意義,并求的表達(dá)式;

(2)當(dāng)隔熱層噴涂厚度為多少毫米時(shí),業(yè)主所付的總費(fèi)用最少?并求此時(shí)與不建隔熱層相比較,業(yè)主可節(jié)省多少錢?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,三棱柱的所有棱長(zhǎng)都是2,平面ABCD,E分別是AC的中點(diǎn).

求證:平面;

求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,用種不同的顏色給圖中的個(gè)格子涂色,每個(gè)格子涂一種顏色,要求最多使用種顏色且相鄰的兩個(gè)格子顏色不同,則不同的涂色方法共有(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是(

A.為真命題,則均為假命題;

B.命題,則的逆否命題為真命題;

C.等比數(shù)列的前項(xiàng)和為,若的否命題為真命題;

D.平面向量的夾角為鈍角的充要條件是

查看答案和解析>>

同步練習(xí)冊(cè)答案