【題目】在平面直角坐標系中,當P(x,y)不是原點時,定義P伴隨點;

P是原點時,定義P伴隨點為它自身,平面曲線C上所有點的伴隨點所構(gòu)成的曲線定義為曲線C伴隨曲線”.現(xiàn)有下列命題:

若點A伴隨點是點,則點伴隨點是點A

單位圓的伴隨曲線是它自身;

若曲線C關(guān)于x軸對稱,則其伴隨曲線關(guān)于y軸對稱;

一條直線的伴隨曲線是一條直線.

其中的真命題是_____________(寫出所有真命題的序列).

【答案】②③

【解析】

試題對于,若令,則其伴隨點為,而的伴隨點為,而不是,故錯誤;對于,設(shè)曲線關(guān)于軸對稱,則對曲線表示同一曲線,其伴隨曲線分別為也表示同一曲線,又因為其伴隨曲線分別為的圖象關(guān)于軸對稱,所以正確;令單位圓上點的坐標為其伴隨點為仍在單位圓上,故正確;對于,直線上取點后得其伴隨點消參后軌跡是圓,故錯誤.所以正確的為序號為②③.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(1)用行列式判斷關(guān)于的二元一次方程組解的情況;

(2)用行列試解關(guān)于的二元一次方程組并對解的情況進行討論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】今有9所省級示范學校參加聯(lián)考,參加人數(shù)約5000人,考完后經(jīng)計算得數(shù)學平均分為113分.已知本次聯(lián)考的成績服從正態(tài)分布,且標準差為12.

(1)計算聯(lián)考成績在137分以上的人數(shù).

(2)從所有試卷中任意抽取1份,已知分數(shù)不超過123分的概率為0.8.

①求分數(shù)低于103分的概率.

②從所有試卷中任意抽取5份,由于試卷數(shù)量較大,可以把每份試卷被抽到的概率視為相同,表示抽到成績低于103分的試卷的份數(shù),寫出的分布列,并求出數(shù)學期望.

參考數(shù)據(jù):

,

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用獨立性檢驗的方法調(diào)查大學生的性別與愛好某項運動是否有關(guān),通過隨機詢問110名不同的大學生是否愛好某項運動,利用列聯(lián)表,由計算可得

PK2>k

010

005

0025

0010

0005

0001

k

2706

3841

5024

6635

7879

10828

參照附表,得到的正確結(jié)論是( )

A.有995%以上的把握認為愛好該項運動與性別無關(guān)

B.有995%以上的把握認為愛好該項運動與性別有關(guān)

C.在犯錯誤的概率不超過005%的前提下,認為愛好該項運動與性別有關(guān)

D.在犯錯誤的概率不超過005%的前提下,認為愛好該項運動與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=aln x (aR).

(1)a=1時,求f(x)x[1,+∞)內(nèi)的最小值;

(2)f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;

(3)求證ln(n+1)> (nN*).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱柱中,底面ABC,是邊長為2的正三角形,,EF分別為BC,的中點.

1求證:平面平面;

2求三棱錐的體積;

3在線段上是否存在一點M,使直線MF與平面沒有公共點?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,四邊形ABCD是直角梯形,且ADBC,ADCD,∠ABC60°,BC2AD2,PC3,PAB是正三角形.

1)求證:ABPC

2)求二面角PCDB的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的中心在原點,焦點在坐標軸上,離心率為,且過點.

1)求雙曲線的方程;

2)若點在雙曲線上,求 的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知圓,點是圓內(nèi)一個定點,是圓上任意-一點,線段的垂直平分線和半徑相交于點,連接,記動點的軌跡為曲線.

(1)求曲線的方程;

(2)、是曲線上關(guān)于原點對稱的兩個點,點是曲線.上任意-一點(不同于點、),當直線、的斜率都存在時,記它們的斜率分別為、,求證:的為定值.

查看答案和解析>>

同步練習冊答案