設(shè)g(x) 是定義在R 上,以1為周期的函數(shù),若函數(shù)f(x)=x+g(x) 在區(qū)間[0,1]上的值域?yàn)閇-2,5],則f(x) 在區(qū)間[0,3]上的值域?yàn)?u>    .
【答案】分析:先根據(jù)g(x) 是定義在R 上,以1為周期的函數(shù),令x+1=t進(jìn)而可求函數(shù)在[1,2]時(shí)的值域,再令x+2=t可求函數(shù)在[2,3]時(shí)的值域,最后求出它們的并集即得(x) 在區(qū)間[0,3]上的值域.
解答:解:g(x)為R上周期為1的函數(shù),則g(x)=g(x+1)
函數(shù)f(x)=x+g(x)在區(qū)間[0,1]【正好是一個(gè)周期區(qū)間長(zhǎng)度】的值域是[-2,5]…(1)
令x+1=t,當(dāng)x∈[0,1]時(shí),t=x+1∈[1,2]
此時(shí),f(t)=t+g(t)=(x+1)+g(x+1)=(x+1)+g(x)
=[x+g(x)]+1
所以,在t∈[1,2]時(shí),f(t)∈[-1,6]…(2)
同理,令x+2=t,在當(dāng)x∈[0,1]時(shí),t=x+2∈[2,3]
此時(shí),f(t)=t+g(t)=(x+2)+g(x+2)=(x+2)+g(x)
=[x+g(x)]+2
所以,當(dāng)t∈[2,3]時(shí),f(t)∈[0,7]…(3)
由已知條件及(1)(2)(3)得到,f(x)在區(qū)間[0,3]上的值域?yàn)閇-2,7]
故答案為:[-2,7].
點(diǎn)評(píng):本題主要考查了函數(shù)的值域、函數(shù)的周期性.考查函數(shù)的性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(n,an)(n∈N*)在函數(shù)f(x)=-6x-2的圖象上,數(shù)列{an}的前n項(xiàng)和為Sn
(Ⅰ)求Sn
(Ⅱ)設(shè)cn=an+8n+3,數(shù)列{dn}滿(mǎn)足d1=c1dn+1=cdn(n∈N*).求數(shù)列{dn}的通項(xiàng)公式;
(Ⅲ)設(shè)g(x)是定義在正整數(shù)集上的函數(shù),對(duì)于任意的正整數(shù)x1、x2,恒有g(shù)(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數(shù),且a≠0),記bn=
g(
dn+1
2
)
dn+1
,試判斷數(shù)列{bn}是否為等差數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)(n,an)(n∈N*)在函數(shù)f(x)=-2x-2的圖象上,數(shù)列{an}的前n項(xiàng)和為Sn,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,且Tn是6Sn與8n的等差中項(xiàng).
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)設(shè)cn=bn+8n+3,數(shù)列{dn}滿(mǎn)足d1=c1,dn+1=cdn(n∈N*).求數(shù)列{dn}的前n項(xiàng)和Dn;
(3)設(shè)g(x)是定義在正整數(shù)集上的函數(shù),對(duì)于任意的正整數(shù)x1,x2,恒有g(shù)(x1x2)=x1g(x2)+x2g(x1)成立,且g(2)=a(a為常數(shù),a≠0),試判斷數(shù)列{
g(
dn+1
2
)
dn+1
}
是否為等差數(shù)列,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

13、設(shè)g(x)是定義在R上,以1為周期的函數(shù),若函數(shù)f(x)=x+g(x)在區(qū)間[3,4]上的值域?yàn)閇-2,5],則f(x)在區(qū)間[-10,10]上的值域?yàn)?div id="bbtxa2j" class="quizPutTag">[-15,11]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)g(x)是定義在R上以1為周期的函數(shù),若函數(shù)f(x)=x+g(x)在區(qū)間[3,4]上的值域?yàn)閇-2,5],則f(x)在區(qū)間[2,5]上的值域?yàn)?!--BA-->
[-3,6]
[-3,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)g(x)是定義在R上,以1為周期的函數(shù),若f(x)=x+g(x)在[0,1]上的值域?yàn)閇-2,5],則f(x)在區(qū)間[0,3]上的值域?yàn)椋ā 。?/div>
A、[-2,7]B、[-2,5]C、[0,8]D、[-3,7]

查看答案和解析>>

同步練習(xí)冊(cè)答案